The TORC1 and PKA protein kinases are central elements of signaling networks that regulate eukaryotic cell proliferation in response to growth factors and/or nutrients. In yeast, attenuation of signaling by these kinases following nitrogen and/or carbon limitation activates the protein kinase Rim15, which orchestrates the initiation of a reversible cellular quiescence program to ensure normal chronological life span. The molecular elements linking Rim15 to distal readouts including the expression of Msn2/4- and Gis1-dependent genes involve the endosulfines Igo1/2. Here, we show that Rim15, analogous to the greatwall kinase in Xenopus, phosphorylates endosulfines to directly inhibit the Cdc55-protein phosphatase 2A (PP2A(Cdc55)). Inhibition of PP2A(Cdc55) preserves Gis1 in a phosphorylated state and consequently promotes its recruitment to and activation of transcription from promoters of specific nutrient-regulated genes. These results close a gap in our perception of and delineate a role for PP2A(Cdc55) in TORC1-/PKA-mediated regulation of quiescence and chronological life span.
Quiescence is essential for the long-term maintenance of adult stem cells but how stem cells maintain quiescence is poorly understood. Here, we show that neural stem cells (NSCs) in the adult mouse hippocampus actively transcribe the pro-activation factor Ascl1 regardless of their activated or quiescent states. We found that the inhibitor of DNA binding protein Id4 is enriched in quiescent NSCs and that elimination of Id4 results in abnormal accumulation of Ascl1 protein and premature stem cell activation. Accordingly, Id4 and other Id proteins promote elimination of Ascl1 protein in NSC cultures. Id4 sequesters Ascl1 heterodimerization partner E47, promoting Ascl1 protein degradation and stem cell quiescence. Our results highlight the importance of non-transcriptional mechanisms for the maintenance of NSC quiescence and reveal a role for Id4 as a quiescence-inducing factor, in contrast with its role of promoting the proliferation of embryonic neural progenitors.
Background: TORC2/Ypk1 regulates actin polarization and endocytosis via unknown effectors. Results: Pharmacological inhibition of TORC2 reveals that flippase kinases and biophysical properties of the plasma membrane are major effectors of TORC2. Conclusion: TORC2 regulates actin and endocytosis via multiple pathways, each with different signaling kinetics. Significance: Elucidation of TORC2 effector pathways in yeast will inform future studies in higher eukaryotes.
Stresses, such as glucose depletion, activate Snf1, the Saccharomyces cerevisiae ortholog of adenosine monophosphate-activated protein kinase (AMPK), enabling adaptive cellular responses. In addition to affecting transcription, Snf1 may also promote mRNA stability in a gene-specific manner. To understand Snf1-mediated signaling, we used quantitative mass spectrometry to identify proteins that were phosphorylated in a Snf1-dependent manner. We identified 210 Snf1-dependent phosphopeptides in 145 proteins. Thirteen of these proteins are involved in mRNA metabolism. Of these, we found that Ccr4 (the major cytoplasmic deadenylase), Dhh1 (an RNA helicase), and Xrn1 (an exoribonuclease) were required for the glucose-induced decay of Snf1-dependent mRNAs that were activated by glucose depletion. Unexpectedly, deletion of XRN1 reduced the accumulation of Snf1-dependent transcripts that were synthesized during glucose depletion. Deletion of SNF1 rescued the synthetic lethality of simultaneous deletion of XRN1 and REG1, which encodes a regulatory subunit of a phosphatase that inhibits Snf1. Mutation of three Snf1-dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Thus, Xrn1 is required for Snf1-dependent mRNA homeostasis in response to nutrient availability.
Nutrient sensing and coordination of metabolic pathways are crucial functions for living cells. A combined analysis of the yeast transcriptome, phosphoproteome and metabolome is used to investigate the interactions between the Snf1 and TORC1 pathways under nutrient-limited conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.