In Europe, free-ranging wildlife has been linked to the emergence of several vector-borne diseases such as rodents for Borrelia burgdorferi s.l. In particular, wild carnivorans are one of the most important sources of emerging zoonotic pathogens worldwide, although little information is available regarding the epidemiology of vector-borne parasites in these animals. Thus, the aim of this paper was to investigate the prevalence of Babesia spp., Anaplasma spp., Ehrlichia spp., Hepatozoon spp. and Leishmania infantum in alpine wild canids and mustelids from Italy. For this study, spleen samples of 157 foxes (Vulpes vulpes), 45 badgers (Meles meles), and 33 wolves (Canis lupus) collected between 2009 and 2017 in Northwest Italy were examined by using conventional PCR. Logistic regression was used to identify possible risk factors for pathogen infections. DNA of any of the tested pathogens was found in more than 90% of the analyzed animals. In particular, Babesia spp. showed significantly higher prevalence in foxes (89.7%) and badgers (89.6%) than in wolves, while the latter were considerably more infected with Hepatozoon canis (75.8%) than foxes (5.1%). None of the badger tested positive for Hepatozoon spp., although they showed high prevalence of Leishmania infantum (53.3%). Sequencing results revealed the presence, among others, of Babesia vulpes, Babesia sp. isolate badger type A and B, and Anaplasma phagocytophilum. Moreover, previously unreported pathogen/host associations were observed, such as Babesia capreoli in wolves and badgers. The prevalence of vector-borne pathogens observed in the present study is one of the highest reported so far, suggesting the importance of free-ranging carnivorans in the epidemiology and maintenance of the sylvatic cycle of the pathogens. Moreover, several of these pathogens are of particular importance regarding human (A. phagocytophilum, L. infantum) and pet health (L. infantum, B. vulpes).
BackgroundPiroplasmosis are among the most relevant diseases of domestic animals. Babesia is emerging as cause of tick-borne zoonosis worldwide and free-living animals are reservoir hosts of several zoonotic Babesia species. We investigated the epidemiology of Babesia spp. and Theileria spp. in wild ungulates and carnivores from Northern Italy to determine which of these apicomplexan species circulate in wildlife and their prevalence of infection.MethodsPCR amplification of the V4 hyper-variable region of the 18S rDNA of Babesia sp./Theileria sp was carried out on spleen samples of 1036 wild animals: Roe deer Capreolus capreolus (n = 462), Red deer Cervus elaphus (n = 52), Alpine Chamois Rupicapra rupicapra (n = 36), Fallow deer Dama dama (n = 17), Wild boar Sus scrofa (n = 257), Red fox Vulpes vulpes (n = 205) and Wolf Canis lupus (n = 7). Selected positive samples were sequenced to determine the species of amplified Babesia/Theileria DNA.ResultsBabesia/Theileria DNA was found with a mean prevalence of 9.94% (IC95% 8.27-11.91). The only piroplasms found in carnivores was Theileria annae, which was detected in two foxes (0.98%; IC95% 0.27-3.49). Red deer showed the highest prevalence of infection (44.23%; IC95% 31.6-57.66), followed by Alpine chamois (22.22%; IC95% 11.71-38.08), Roe deer (12.55%; IC95% 9.84-15.89), and Wild boar (4.67%; IC95% 2.69-7.98). Genetic analysis identified Babesia capreoli as the most prevalent piroplasmid found in Alpine chamois, Roe deer and Red deer, followed by Babesia bigemina (found in Roe deer, Red deer and Wild boar), and the zoonotic Babesia venatorum (formerly Babesia sp. EU1) isolated from 2 Roe deer. Piroplasmids of the genus Theileria were identified in Wild boar and Red deer.ConclusionsThe present study offers novel insights into the role of wildlife in Babesia/Theileria epidemiology, as well as relevant information on genetic variability of piroplasmids infecting wild ungulates and carnivores.
BackgroundToxoplasma gondii is an apicomplexan parasite that is able to infect almost all warm blooded animals. In Europe, the domestic cat is the main definitive host. Worldwide, 6 billion people are infected with this parasite. The goal of our research is to evaluate the prevalence of T. gondii infection in wild animals from a previously unsampled area in Northern Italy where 0.1% of women seroconvert during pregnancy each year.MethodsWe sampled and tested skeletal muscle and central nervous system tissue of 355 wild animals by PCR (n = 121 roe deer Capreolus capreolus, n = 105 wild boar Sus scrofa, n = 94 red fox Vulpes vulpes, n = 22 alpine chamois Rupicapra rupicapra, n = 13 red deer Cervus elaphus).ResultsThe overall prevalence of infection with T. gondii was 10.99% (confidence interval (CI) 95% 8.14%-14.67%). A higher rate of infection was recorded in carnivores and omnivores (red fox 20.21%, CI 95% 13.34%-29.43%; wild boar 16.19%, CI 95% 10.36%-24.41%) compared to ruminants (2.48%, CI 95% 0.85%-7.04% in roe deer; 0.00%, CI 95% 0.00%-22.81% in red deer, and 0.00% alpine chamois (CI 95% 0.00%-14.87%) confirming the importance of tissue cysts in transmitting infection.ConclusionsThe relatively high prevalence of T. gondii DNA in highly consumed game species (wild boar and roe deer) gives valuable insights into T. gondii epidemiology and may contribute to improve prevention and control of foodborne toxoplasmosis in humans.
The role of wild and free-roaming domestic carnivores as a reservoir of Leishmania infantum was investigated on the Mediterranean island of Mallorca (Balearic Islands, Spain), an endemic area for this disease. Serum, blood and/or spleen samples from 169 animals [48 dogs from a kennel, 86 wild-caught feral cats, 23 pine martens (Martes martes), 10 common genets (Genetta genetta) and two weasels (Mustela nivalis)] were analysed. Seroprevalence determined by Western blotting was 38% in dogs and 16% in feral cats, while the prevalence of infection determined by PCR was 44% in dogs, 26% in cats, 39% in pine martens and 10% in genets. This is the first report of infection by L. infantum in the pine marten or any other member of the Mustelidae family. Restriction fragment length polymorphism (RFLP) analysis found 33 different patterns in 23 dogs, 14 cats and three martens. Two patterns were shared by dogs and cats, two by different cats, and one by different dogs. Patterns were different to those previously reported in carnivores from peninsular Spain. No external lesions compatible with leishmaniasis were observed in any species other than the dogs. Although the dog is probably the primary reservoir of leishmaniasis in endemic areas, the prevalence and the absence of apparent signs of this disease within the island's abundant feral cat and pine marten populations could make these species potential primary or secondary hosts of L. infantum in Mallorca.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.