Light has a profound effect on plant growth and development. Red and blue light best drive photosynthetic metabolism, so it is no surprise that these light qualities are particularly efficient in advancing the developmental characteristics associated with autotrophic growth habits. Photosynthetically inefficient light qualities also impart important environmental information to a developing plant. For example, far-red light reverses the effect of phytochromes, leading to changes in gene expression, plant architecture, and reproductive responses. Recent evidence shows that green light also has discrete effects on plant biology, and the mechanisms that sense this light quality are now being elucidated. Green light has been shown to affect plant processes via cryptochrome-dependent and cryptochrome-independent means. Generally, the effects of green light oppose those directed by red and blue wavebands. This review examines the literature where green light has been implicated in physiological or developmental outcomes, many not easily attributable to known sensory systems. Here roles of green light in the regulation of vegetative development, photoperiodic flowering, stomatal opening, stem growth modulation, chloroplast gene expression and plant stature are discussed, drawing from data gathered over the last 50 years of plant photobiological research. Together these reports support a conclusion that green light sensory systems adjust development and growth in orchestration with red and blue sensors.
Light quality and quantity affect plant adaptation to changing light conditions. Certain wavelengths in the visible and near-visible spectrum are known to have discrete effects on plant growth and development, and the effects of red, far-red, blue, and ultraviolet light have been well described. In this report, an effect of green light on Arabidopsis (Arabidopsis thaliana) rosette architecture is demonstrated using a narrow-bandwidth light-emitting diode-based lighting system. When green light was added to a background of constant red and blue light, plants exhibited elongation of petioles and upward leaf reorientation, symptoms consistent with those observed in a shaded light environment. The same green light-induced phenotypes were also observed in phytochrome (phy) and cryptochrome (cry) mutant backgrounds. To explore the molecular mechanism underlying the green light-induced response, the accumulation of shade-induced transcripts was measured in response to enriched green light environments. Transcripts that have been demonstrated to increase in abundance under far-red-induced shade avoidance conditions either decrease or exhibit no change when green light is added. However, normal far-red light-associated transcript accumulation patterns are observed in cryptochrome mutants grown with supplemental green light, indicating that the green-absorbing form of cryptochrome is the photoreceptor active in limiting the green light induction of shade-associated transcripts. These results indicate that shade symptoms can be induced by the addition of green light and that cryptochrome receptors and an unknown light sensor participate in acclimation to the enriched green environment.
Genetic studies have shown the effects of various photoreceptors on early photomorphogenic processes, defining the precise time course of red (RL), far-red (FrL) and blue light (BL) action. In this study, the effect of green wavebands in conjunction with these responses is examined. Longer-term (end point; 24-96 h) analysis of hypocotyl elongation in enriched green environments shows an increase in growth compared to seedlings under blue, red or both together. The effect was only observed at lower fluence rates (<10 μmol/m² s). Genetic analyses demonstrate that cryptochromes are required for this GL effect, consistent with earlier findings, and that the phy receptors have no influence. However, analysis of early (minutes to hours) stem growth kinetics indicates that GL cannot reverse the cryptochrome-mediated BL effect during early stem growth inhibition, and instead acts additively with BL to drive cryptochrome-mediated inhibition. Green light (GL) treatments antagonize RL and FrL-mediated hypocotyl inhibition. The GL opposition of RL responses persists in phyA, phyB, cry1cry2 and phot2 mutants. The response requires phot1 and NPH3, suggesting that this is not a GL response, but instead a response to extremely low-fluence rate BL. Tests with dim BL (<0.1 μmol/m² s) confirm a previously uncharacterized phot1-dependent promotion of stem growth, opposing the effects of RL. These findings demonstrate how enriched green environments may adjust RL and BL photomorphogenic responses through both the crys and phot1 receptors, and define a new role for phot1 in stem growth promotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.