SignificanceT helper type (Th) 9 cells demonstrate both pro- and antiinflammatory properties, pointing to a functional heterogeneity not examined so far. Applying single cell gene expression analysis of alloreactive Th9 cells, we revealed the existence of two major subsets, CD96high and CD96low Th9 cells, with strongly opposing inflammatory and, especially, colitis-inducing potential. Mechanistically, we found that CD96 controls cytokine and colitis-inducing potential of Th9 cells, providing strong evidence for an inhibitory role of CD96 in controlling CD4+ T-cell effector functions. Thus, interfering with CD96-mediated immune inhibition would be a promising approach in preventing Th9-mediated diseases, such as ulcerative colitis, or reinforcement of Th9-mediated immune control of tumors and infections.
Recent data suggest that donor-specific memory T cells (T mem ) are an independent risk factor for rejection and poor graft function in patients and a major challenge for immunosuppression minimizing strategies. Many tolerance induction protocols successfully proven in small animal models e.g. costimulatory blockade, T cell depletion failed in patients. Consequently, there is a need for more predictive transplant models to evaluate novel promising strategies, such as adoptive transfer of regulatory T cells (Treg).We established a clinically more relevant, lifesupporting rat kidney transplant model using a high responder (DA to LEW) recipients that received donorspecific CD4 + / 8 + GFP + T mem before transplantation to achieve similar pre-transplant frequencies of donorspecific T mem as seen in many patients. T cell depletion alone induced long-term graft survival in naïve recipients but could not prevent acute rejection in T mem + rats, like in patients. Only if T cell depletion was combined with permanent CNI-treatment, the intragraft inflammation, and acute/chronic allograft rejection could be controlled long-term. Remarkably, combining 10 days CNI treatment and adoptive transfer of Tregs (day 3) but not Treg alone also induced longterm graft survival and an intragraft tolerance profile (e.g. high TOAG-1) in T mem + rats. Our model allows evaluation of novel therapies under clinically relevant conditions.
Conventional immunosuppressive or basiliximab treatment cannot control the persistence of TEMRA T cells, which may contribute to acute cellular rejection and antibody-mediated rejection after liver transplantation. In the future, specific targeting of TEMRA cells in selected patients may prevent the occurrence of difficult to treat steroid-resistant rejections, thereby leading to improved patient outcome.
Primary T cell activation and effector cell differentiation is required for rejection of allogeneic grafts in na€ ıve recipients. It has become evident, that mitochondria play an important role for T cell activation. Expression of several mitochondrial proteins such as TCAIM (T cell activation inhibitor, mitochondrial) is down-regulated upon T cell receptor triggering. Here we report that TCAIM inhibited spontaneous development of memory and effector T cells. CD4 þ T cells from Tcaim knock-in (KI) mice showed reduced activation, cytokine secretion and proliferation in vitro. Tcaim KI T cells tolerated allogeneic skin grafts upon transfer into Rag-1 KO mice. CD4 þ and CD8 þ T cells from these mice did not infiltrate skin grafts and kept a na€ ıve or central memory phenotype, respectively. They were unable to acquire effector phenotype and functions. TCAIM altered T cell activation-induced mitochondrial distribution and reduced mitochondrial reactive oxygen species (mROS) production. Thus, TCAIM controls T cell activation and promotes tolerance induction probably by regulating TCR-mediated mitochondrial distribution and mROS production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.