Unlike conventional cameras which capture video at a fixed frame rate, Dynamic Vision Sensors (DVS) record only changes in pixel intensity values. The output of DVS is simply a stream of discrete ON/OFF events based on the polarity of change in its pixel values. DVS has many attractive features such as low power consumption, high temporal resolution, high dynamic range and less storage requirements. All these make DVS a very promising camera for potential applications in wearable platforms where power consumption is a major concern. In this paper we explore the feasibility of using DVS for Human Activity Recognition (HAR). We propose to use the various slices (such as x − y, x − t and y − t) of the DVS video as a feature map for HAR and denote them as Motion Maps. We show that fusing motion maps with Motion Boundary Histogram (MBH) gives good performance on the benchmark DVS dataset as well as on a real DVS gesture dataset collected by us. Interestingly, the performance of DVS is comparable to that of conventional videos although DVS captures only sparse motion information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.