With the emergence of drug resistance and the genomic revolution there has been a renewed interest in the genes that are responsible for the generation of bioactive natural products. Secondary metabolites of one major class are biosynthesized at one or more sites by ultra large enzymes that carry covalent intermediates on phosphopantetheine arms. Because such intermediates are difficult to characterize in vitro, we have developed a new approach for streamlined detection of substrates, intermediates and products attached to a phosphopantetheinyl arm of the carrier site. During vibrational activation of gas phase carrier domains, facile elimination occurs in benchtop and FourierTransform mass spectrometers alike. Phosphopantetheinyl ejections quickly reduce >100 kDa megaenzymes to <1000 Da ions for structural assignment of intermediates at <0.007 Da mass accuracy without proteolytic digestion. This "Top Down" approach quickly illuminated diverse acylintermediates on the carrier domains of the nonribosomal peptide synthetases (NRPSs) or polyketide synthases (PKSs) found in the biosynthetic pathways of prodigiosin, pyoluteorin, mycosubtilin, nikkomycin, enterobactin, gramicidin and several proteins from the orphan pksX gene cluster from Bacillus subtilis. By focusing on just those regions undergoing covalent chemistry, the method delivered clean proof for the reversible dehydration of hydroxymethylglutaryl-S-PksL via incorporation of 2 H or 18 O from the buffer. The facile nature of this revised assay will allow diverse laboratories to spearhead their NRPS/PKS projects with benchtop mass spectrometers.About 50% of today's drugs and 75% of today's antimicrobials are derived from secondary metabolites (1,2). Many of those secondary metabolites are of polyketide or nonribosomal peptide origin. With the emergence of resistance and the genomic revolution there is a "renaissance" ongoing in the discovery of bioactive natural products and the characterization of the genes responsible for their production (1). Non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) are large enzymes often >>100 kDa that biosynthesize their natural products (e.g., the antibiotics penicillin, vancomycin) via covalent intermediates on phosphopantetheine arms (3). Currently, even when NRPS and PKS proteins can be overproduced their direct interrogation by mass spectrometry (MS) is difficult and timeconsuming, with reports from relatively few laboratories appearing in the primary literature (4-6). Therefore it would be of great benefit for the NRPS and PKS community if new MSbased methods to characterize these proteins were developed and easier to implement. This paper describes such a method.The purpose of this paper is four-fold: 1) the paper introduces a new and efficient method that utilizes a gas phase elimination reaction that takes place during tandem mass spectrometry (MS/MS) to quickly characterize substrates, intermediates and products that are loaded onto the phosphopantetheinyl arm on carrier domains of NRPS...
The soil dwelling, plant-growth promoting bacterium, Bacillus amyloliquefaciens FZB42, is a prolific producer of complex natural products. Recently, a new FZB42 metabolite, plantazolicin (PZN), has been described as a member of the growing thiazole/oxazole-modified microcin (TOMM) family. TOMMs are biosynthesized from inactive, ribosomal peptides and undergo a series of cyclodehydrations, dehydrogenations, and other modifications to become bioactive natural products. Using high-resolution mass spectrometry, chemoselective modification, genetic interruptions, and other spectroscopic tools, we have determined the molecular structure of PZN. In addition to two conjugated polyazole moieties, the amino-terminus of PZN has been modified to Nα,Nα-dimethylarginine. PZN exhibited a highly selective antibiotic activity towards Bacillus anthracis, but no other tested human pathogen. By altering oxygenation levels during fermentation, PZN analogs were produced that bear variability in their heterocycle content, which yielded insight into the order of biosynthetic events. Lastly, genome-mining has revealed the existence of four additional PZN-like biosynthetic gene clusters. Given their structural uniqueness and intriguing antimicrobial specificity, the PZN class of antibiotics may hold pharmacological value.
Nonreducing iterative polyketide synthases (NR-PKSs) are responsible for assembling the core of fungal aromatic natural products with diverse biological properties. Despite recent advances in the field, many mechanistic details of polyketide assembly by these megasynthases remain unknown. To expand our understanding of substrate loading, polyketide elongation, cyclization, and product release, active site occupancy and product output were explored by Fourier transform mass spectrometry using the norsolorinic acid anthrone-producing polyketide synthase, PksA, from the aflatoxin biosynthetic pathway in Aspergillus parasiticus. Here we report the simultaneous observation of covalent intermediates from all catalytic domains of PksA from in vitro reconstitution reactions. The data provide snapshots of iterative catalysis and reveal an underappreciated editing function for the C-terminal thioesterase domain beyond its recently established synthetic role in Claisen/Dieckmann cyclization and product release. The specificity of thioesterase catalyzed hydrolysis was explored using biosynthetically relevant protein-bound and small molecule acyl substrates, and demonstrated activity against hexanoyl and acetyl, but not malonyl. Processivity of polyketide extension was supported by the inability of a nonhydrolyzable malonyl analog to trap products of intermediate chain lengths and by the detection of only fully extended species observed covalently bound to, and as the predominant products released by, PksA. High occupancy of the malonyl transacylase domain and fast relative rate of malonyl transfer compared to starter unit transfer indicate that rapid loading of extension units onto the carrier domain facilitates efficient chain extension in a manner kinetically favorable to ultimate product formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.