Quantum entanglement is widely recognized as one of the key resources for the advantages of quantum information processing, including universal quantum computation 1 , reduction of communication complexity 2,3 or secret key distribution 4 . However, computational models have been discovered, which consume very little or no entanglement and still can efficiently solve certain problems thought to be classically intractable 5,6 . The existence of these models suggests that separable or weakly entangled states could be extremely useful tools for quantum information processing as they are much easier to prepare and control even in dissipative environments. It has been proposed that a requirement for useful quantum states is the generation of so-called quantum discord 7,8 , a measure of non-classical correlations that includes entanglement as a subset. Although a link between quantum discord and few quantum information tasks has been studied, its role in computation speed-up is still open and its operational interpretation remains restricted to only few somewhat contrived situations 9-12 . Here we show that quantum discord is the optimal resource for the remote quantum state preparation 13 , a variant of the quantum teleportation protocol 14 . Using photonic quantum systems, we explicitly show that the geometric measure of quantum discord 15 is related to the fidelity of this task, which provides an operational meaning. Moreover, we demonstrate that separable states with non-zero quantum discord can outperform entangled states. Therefore, the role of quantum discord might provide fundamental insights for resource-efficient quantum information processing.Introduction.-Quantum computation and quantum communication is believed to allow for information processing with an efficiency that cannot be achieved by any classical device. It is usually assumed that a key resource for this enhanced performance is quantum entanglement 16 . The creation and manipulation of entanglement, however, is a very demanding task, as it requires extremely precise quantum control and isolation from the environment. Thus, current experimental achievements are limited to rather small scale entangled systems [17][18][19] . On the other hand there is no proof that quantum entanglement is necessary for quantum information processing (QIP) that can outperform its classical counterpart. The investigation of QIP protocols that allow for significant enhancements in the efficiency of data processing by only using separable states is of high interest. Obviously, such states have the benefit of being easier to prepare and more robust against losses and experimental imperfections. In fact, there are quantum computational models based on mixed, separable states, most notably the so-called deterministic quantum computation with one qubit (DQC1) 5 , which has recently been demonstrated experimentally [20][21][22] . In this context, quantum discord has been proposed as the resource that can provide the enhancement for the computation 23,24 , but its relation to...
Quantum computers, besides offering substantial computational speedups, are also expected to preserve the privacy of a computation. We present an experimental demonstration of blind quantum computing in which the input, computation, and output all remain unknown to the computer. We exploit the conceptual framework of measurement-based quantum computation that enables a client to delegate a computation to a quantum server. Various blind delegated computations, including one- and two-qubit gates and the Deutsch and Grover quantum algorithms, are demonstrated. The client only needs to be able to prepare and transmit individual photonic qubits. Our demonstration is crucial for unconditionally secure quantum cloud computing and might become a key ingredient for real-life applications, especially when considering the challenges of making powerful quantum computers widely available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.