The σ1 receptor is an integral membrane protein that shares no homology with other receptor systems, has no unequivocally identified natural ligands, but appears to play critical roles in a wide variety of cell functions. While the number of reports of the possible functions of the σ1 receptor is increasing, almost no information about the three-dimensional structure of the receptor and/or possible modes of interaction of the σ1 protein with its ligands have been described. Here we performed an in vitro/in silico investigation to analyze the molecular interactions of the σ1 receptor with its prototypical agonist (+)-pentazocine. Accordingly, 23 mutant σ1 isoforms were generated, and their interactions with (+)-pentazocine were determined experimentally. All direct and/or indirect effects exerted by the mutant residues on the receptor-agonist interactions were reproduced and rationalized in silico, thus shining new light on the three-dimensional structure of the σ1 receptor and its ligand binding site.
The exact 3D structure of the enigmatic σ1 receptor is unknown, as the crystal structure of this protein has not been solved so far. Many efforts have been devoted to unveiling the structure of the σ1 receptor and specifically its binding site, which include photoaffinity labeling, site directed mutagenesis, and homology modeling. The aim of the present miniperspective is to give a short overview of all results that contribute to the current knowledge of the σ1 receptor and its ligand binding site.
Stereoisomeric 2,5-diazabicyclo[2.2.2]octanes 14 and 15 were prepared in a chiral-pool synthesis starting from (S)- or (R)-aspartate. The key step in the synthesis was a Dieckmann-analogous cyclization of (dioxopiperazinyl)acetates 8, which involved trapping of the intermediate hemiketal anion with Me3SiCl. The σ1 affinity was tested using membrane preparations from animal (guinea pig) and human origin. The binding of bicyclic compounds was analyzed by molecular dynamics simulations based on a 3D homology model of the σ1 receptor. The good correlation between Ki values observed in the σ1 assays and calculated free binding energy, coupled with the identification of four crucial ligand/receptor interactions, allowed the formulation of structure-affinity relationships. In an in vitro antitumor assay with seven human tumor cell lines, the bicyclic compounds inhibited selectively the growth of the cell line A427, which is due to induction of apoptosis. In this assay, the compounds behave like the known σ1 receptor antagonist haloperidol.
Starting from (S)- or (R)-aspartate, three synthetic strategies were explored to prepare hydroxyethyl substituted piperazines with different substituents at the N-atoms. σ receptor affinity was recorded using receptor material from both animal and human origin. σ1 affinities determined with guinea pig brain and human RPMI 8226 tumor cell lines differed slightly but showed the same tendency. (S)-2-[4-(Cyclohexylmethyl)-1-(naphthalene-2-ylmethyl)piperazin-2-yl]ethanol (7c) revealed the highest affinity at human σ1 receptors (Ki = 6.8 nM). The potent σ1 receptor ligand 7c was able to inhibit selectively the growth of three human tumor cell lines with IC50 values in the low micromolar range. The reduced growth of the RPMI-8226 cell line was caused by apoptosis. The interaction of 7c with the σ1 receptor was analyzed in detail using the 3D homology model of the σ1 receptor. The calculated free binding energies of all hydroxyethylpiperazines nicely correlate with their recorded affinities toward the human σ1 receptor.
σ 1 and/or σ 2 receptors play a crucial role in pathological conditions such as pain, neurodegenerative disorders, and cancer. A set of spirocyclic cyclohexanes with diverse O-heterocycles and amino moieties (general structure III) was prepared and pharmacologically evaluated. In structure−activity relationships studies, the σ 1 receptor affinity and σ 1 :σ 2 selectivity were correlated with the stereochemistry, the kind and substitution pattern of the O-heterocycle, and the substituents at the exocyclic amino moiety. cis-configured 2-benzopyran cis-11b bearing a methoxy group and a tertiary cyclohexylmethylamino moiety showed the highest σ 1 affinity (K i = 1.9 nM) of this series of compounds. In a Ca 2+ influx assay, cis-11b behaved as a σ 1 antagonist. cis-11b reveals high selectivity over σ 2 and opioid receptors. The interactions of the novel σ 1 ligands were analyzed on the molecular level using the recently reported X-ray crystal structure of the σ 1 receptor protein. The protonated amino moiety forms a persistent salt bridge with E172. The spiro[benzopyran-1,1′-cyclohexane] scaffold and the cyclohexylmethyl moiety occupy two hydrophobic pockets. Exchange of the N-cyclohexylmethyl moiety by a benzyl group led unexpectedly to potent and selective μ-opioid receptor ligands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.