Western lifestyle with high salt consumption leads to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper (TH)17 cells, which may also contribute to hypertension. Induction of TH17 cells depends on the gut microbiota, yet the effect of salt on the gut microbiome is unknown. In mouse model systems, we show that high salt intake affects the gut microbiome, particularly by depleting Lactobacillus murinus. Consequently, L. murinus treatment prevents salt-induced aggravation of actively-induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension, by modulating TH17 cells. In line with these findings, moderate high salt challenge in a pilot study in humans reduces intestinal survival of Lactobacillus spp. along with increased TH17 cells and blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
Short-chain fatty acids are processed from indigestible dietary fibers by gut bacteria and have immunomodulatory properties. Here, we investigate propionic acid (PA) in multiple sclerosis (MS), an autoimmune and neurodegenerative disease. Serum and feces of subjects with MS exhibited significantly reduced PA amounts compared with controls, particularly after the first relapse. In a proof-of-concept study, we supplemented PA to therapy-naive MS patients and as an add-on to MS immunotherapy. After 2 weeks of PA intake, we observed a significant and sustained increase of functionally competent regulatory T (Treg) cells, whereas Th1 and Th17 cells decreased significantly. Post-hoc analyses revealed a reduced annual relapse rate, disability stabilization, and reduced brain atrophy after 3 years of PA intake. Functional microbiome analysis revealed increased expression of Treg-cell-inducing genes in the intestine after PA intake. Furthermore, PA normalized Treg cell mitochondrial function and morphology in MS. Our findings suggest that PA can serve as a potent immunomodulatory supplement to MS drugs.
Summary A vast number of studies have demonstrated a remarkable role for the gut microbiota and their metabolites in the pathogenesis of inflammatory diseases, including multiple sclerosis (MS). Recent studies in experimental autoimmune encephalomyelitis, an animal model of MS, have revealed that modifying certain intestinal bacterial populations may influence immune cell priming in the periphery, resulting in dysregulation of immune responses and neuroinflammatory processes in the central nervous system (CNS). Conversely, some commensal bacteria and their antigenic products can protect against inflammation within the CNS. Specific components of the gut microbiome have been implicated in the production of pro‐inflammatory cytokines and subsequent generation of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of regulatory T‐cells (Treg), contributing to immune suppression. Short‐chain fatty acids may induce Treg either by G‐protein‐coupled receptors or inhibition of histone deacetylases. Tryptophan metabolites may suppress inflammatory responses by acting on the aryl hydrocarbon receptor in T‐cells or astrocytes. Interestingly, secretion of these metabolites can be impaired by excess consumption of dietary components, such as long‐chain fatty acids or salt, indicating that the diet represents an environmental factor affecting the complex crosstalk between the gut microbiota and the immune system. This review discusses new aspects of host–microbiota interaction and the immune system with a special focus on MS as a prototype T‐cell‐mediated autoimmune disease of the CNS.
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) that is characterised pathologically by demyelination, gliosis, neuro-axonal damage and inflammation. Despite intense research, the underlying pathomechanisms driving inflammatory demyelination in MS still remain incompletely understood. It is thought to be caused by an autoimmune response towards CNS self-antigens in genetically susceptible individuals, assuming autoreactive T cells as disease-initiating immune cells. Yet, B cells were recognized as crucial immune cells in disease pathology, including antibody-dependent and independent effects. Moreover, myeloid cells are important contributors to MS pathology, and it is becoming increasingly evident that different cell types act in concert during MS immunopathology. This is supported by the finding that the beneficial effects of actual existing disease-modifying therapies cannot be attributed to one single immune cell-type, but rather involve immunological cooperation. The current strategy of MS therapies thus aims to shift the immune cell repertoire from a pro-inflammatory towards an anti-inflammatory phenotype, involving regulatory T and B cells and anti-inflammatory macrophages. Although no existing therapy actually exists that directly induces an enhanced regulatory immune cell pool, numerous studies identified potential net effects on these cell types. This review gives a conceptual overview on T cells, B cells and myeloid cells in the immunopathology of relapsing-remitting MS and discusses potential contributions of actual disease-modifying therapies on these immune cell phenotypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.