Nucleocidin is one of the very few natural products known to contain fluorine. Mysteriously, the nucleocidin producer Streptomyces calvus ATCC 13382 has not been observed to synthesize the compound since its discovery in 1956. Here, we report that complementation of S. calvus ATCC 13382 with a functional bldA-encoded Leu-tRNA(UUA) molecule restores the production of nucleocidin. Nucleocidin was detected in culture extracts by (19) F NMR spectroscopy, HPLC-ESI-MS, and HPLC-continuum source molecular absorption spectroscopy for fluorine-specific detection. The molecule was purified from a large-scale culture and definitively characterized by NMR spectroscopy and high-resolution MS. The nucleocidin biosynthetic gene cluster was identified by the presence of genes encoding the 5'-O-sulfamate moiety and confirmed by gene disruption. Two of the genes within the nucleocidin biosynthetic gene cluster contain TTA codons, thus explaining the dependence on bldA and resolving a 60-year-old mystery.
Streptomyces species are well known for their particular features of morphological differentiation. On solid agar, a mold-like aerial mycelium is formed and spores are produced, in which the bld genes play a crucial role. In S. coelicolor, mutations in one specific bld gene called bldA led to a "naked" phenotype lacking aerial hyphae and spores. This peculiar behavior became a major interest for scientific research in the past and it was revealed that bldA is coding for a unique tRNA able to translate a UUA codon into the amino acid leucine. UUA codons are a very rare property of G + C-rich Streptomyces genomes. The impact of bldA on morphology can in parts be attributed to the regulatory effect of bldA on the translational level, because TTA-containing genes can only be translated into their corresponding protein in the presence of a fully functioning bldA gene. In addition to the visible effect of bldA expression on the phenotype of S. coelicolor, bldA mutants were also deficient in antibiotic production. This led to the assumption that the role of bldA must exceed translational control. Many TTA-containing genes are coding for transcriptional regulators which are activating or repressing the transcription of many more genes. Proteomics and transcriptomics are two powerful methods for identifying bldA target genes and it was possible to assign also post-translational regulation to bldA. This review wants to give a short overview on the importance of bldA as a regulator of morphological differentiation and antibiotic production by switching on "silent" gene clusters in Streptomyces.
Graphical abstractSix novel ruthenium(II)- and osmium(II)-arene complexes with indoloquinoline modified ligands containing methyl and halo substituents in position 8 of the molecule backbone have been synthesised, comprehensively characterised and tested for cytotoxicity in three human cancer cell lines, yielding IC50 values in the 10−6–10−7 M concentration range.Highlights► Synthesis of novel indolo[3,2-c]quinoline-based ruthenium- and osmium-arene complexes. ► Characterisation by 1D/2D NMR–, UV–Vis spectroscopy, ESI mass spectrometry and X-ray crystallography. ► In vitro antiproliferative activity determined by MTT assay.
Semisynthesis and characterization of homogeneously mono- and di-PEGylated full length PrP variants to study the impact of PEGylation (as N-glycan mimics) on protein folding and aggregation.
Semisynthesis of proteins via expressed protein ligation is a widely applicable method, even more so because of the possibility of ligation at non‐cysteine sites using β‐mercapto amino acids that can be converted to the corresponding native amino acids by desulfurization. A drawback of this ligation– desulfurization approach is the removal of any unprotected native cysteine residues within the ligated protein segments. Here, we show that the phenacyl (PAc) moiety can be successfully used to protect cysteines within recombinantly generated protein segments. As such, this group was selectively appended onto cysteine side chains within bacterially expressed polypeptides following intein cleavage, which reveals a rather sensitive thioester at the C‐terminus. The PAc group proved to be compatible with native chemical ligation, radical desulfurization, and reverse‐phase HPLC conditions, and was smoothly removed at the end. The utility of the PAc protecting group was then demonstrated by the ‘traceless’ semisynthesis of two proteins containing one or two native cysteines: human small heat shock protein Hsp27 and murine prion protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.