Finding the targets of natural products is of key importance in both chemical biology and drug discovery, and deconvolution of cofactor interactomes contributes to the functional annotation of the proteome. Identifying the proteins that underlie natural compound activity in phenotypic screens helps to validate the respective targets and, potentially, expand the druggable proteome. Here, we present a generally applicable protocol for the photoactivated immobilization of unmodified and microgram quantities of natural products on diazirine-decorated beads and their use for systematic affinity-based proteome profiling. We show that among 31 molecules of very diverse reported activity and biosynthetic origin, 25 could indeed be immobilized. Dose−response competition binding experiments using lysates of human or bacterial cells followed by quantitative mass spectrometry recapitulated targets of 9 molecules with <100 μM affinity. Among them, immobilization of coenzyme A produced a tool to interrogate proteins containing a HotDog domain. Surprisingly, immobilization of the cofactor flavin adenine dinucleotide (FAD) led to the identification of nanomolar interactions with dozens of RNA-binding proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.