Biodiversity encompasses the complex variety of life at all scales, ranging from genes to species to ecosystems. It encapsulates the structure, function, distribution, traits and composition of all living things. Crisis-level losses of biodiversity are stimulating action from local to global scales, as evidenced by establishment of the United Nations Sustainable Development Goals (SDGs) and Aichi targets and the current post-2020 negotiation of the Convention on Biological Diversity (CBD), as well as the first round of risk assessments by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) 1 . In response to these losses of biodiversity, the Group on Earth Observations Biodiversity Observation Network (GEO BON) 2,3 proposes a common framework of essential biodiversity variables (EBVs) 4 for monitoring biodiversity. These EBVs form a core set of complementary biological measurements for capturing considerable biodiversity change and are produced by
Quantification of vegetation properties plays an important role in the assessment of ecosystem functions with leaf dry mater content (LDMC) and specific leaf area (SLA) being two key functional traits. For the first time, these two leaf traits have been estimated from the airborne images (HySpex) using the INFORM radiative transfer model and Continuous Wavelet Analysis (CWA). Ground truth data, were collected for 33 sample plots during a field campaign in July 2013 in the Bavarian Forest National Park, Germany, concurrent with the hyperspectral overflight. The INFORM model was used to simulate the canopy reflectance of the test site and the simulated spectra were transformed to wavelet features by applying CWA. Next, the top 1% strongly correlated wavelet features with the LDMC and SLA were used to develop predictive (regression) models. The two leaf traits were then retrieved using the CWA transformed HySpex imagery and the predictive models. The results were validated using R 2 and the RMSE of the estimated and measured variables. Our results revealed strong correlations between six wavelet features and LDMC, as well as between four wavelet features and SLA. The wavelet features at 1741 nm (scale 5) and 2281 nm (scale 4) were the two most strongly correlated with LDMC and SLA respectively. The combination of all the identified wavelet features for LDMC yielded the most accurate prediction (R 2 = 0.59 and RMSE = 4.39%). However, for SLA the most accurate prediction was obtained from the single most correlated feature: 2281 nm, scale 4 (R 2 = 0.85 and RMSE = 4.90). Our results demonstrate the applicability of Continuous Wavelet Analysis (CWA) when inverting radiative transfer models, for accurate mapping of forest leaf functional traits.
Forests in Germany cover around 11.4 million hectares and, thus, a share of 32% of Germany’s surface area. Therefore, forests shape the character of the country’s cultural landscape. Germany’s forests fulfil a variety of functions for nature and society, and also play an important role in the context of climate levelling. Climate change, manifested via rising temperatures and current weather extremes, has a negative impact on the health and development of forests. Within the last five years, severe storms, extreme drought, and heat waves, and the subsequent mass reproduction of bark beetles have all seriously affected Germany’s forests. Facing the current dramatic extent of forest damage and the emerging long-term consequences, the effort to preserve forests in Germany, along with their diversity and productivity, is an indispensable task for the government. Several German ministries have and plan to initiate measures supporting forest health. Quantitative data is one means for sound decision-making to ensure the monitoring of the forest and to improve the monitoring of forest damage. In addition to existing forest monitoring systems, such as the federal forest inventory, the national crown condition survey, and the national forest soil inventory, systematic surveys of forest condition and vulnerability at the national scale can be expanded with the help of a satellite-based earth observation. In this review, we analysed and categorized all research studies published in the last 20 years that focus on the remote sensing of forests in Germany. For this study, 166 citation indexed research publications have been thoroughly analysed with respect to publication frequency, location of studies undertaken, spatial and temporal scale, coverage of the studies, satellite sensors employed, thematic foci of the studies, and overall outcomes, allowing us to identify major research and geoinformation product gaps.
Central Europe was hit by several unusually strong periods of drought and heat between 2018 and 2020. These droughts affected forest ecosystems. Cascading effects with bark beetle infestations in spruce stands were fatal to vast forest areas in Germany. We present the first assessment of canopy cover loss in Germany for the period of January 2018–April 2021. Our approach makes use of dense Sentinel-2 and Landsat-8 time-series data. We computed the disturbance index (DI) from the tasseled cap components brightness, greenness, and wetness. Using quantiles, we generated monthly DI composites and calculated anomalies in a reference period (2017). From the resulting map, we calculated the canopy cover loss statistics for administrative entities. Our results show a canopy cover loss of 501,000 ha for Germany, with large regional differences. The losses were largest in central Germany and reached up to two-thirds of coniferous forest loss in some districts. Our map has high spatial (10 m) and temporal (monthly) resolution and can be updated at any time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.