Human mesenchymal stem cells (hMSCs) represent a promising treatment approach for tissue repair and regeneration. However, little is known about the underlying mechanisms and the fate of the transplanted cells. The objective of the presented work was to determine the feasibility of PET imaging and in vivo monitoring after transplantation of dopamine type 2 receptor-expressing cells. Methods: An hMSC line constitutively expressing a mutant of the dopamine type 2 receptor (D2R80A) was generated by lentiviral gene transfer. D2R80A messenger RNA expression was confirmed by reverse transcriptase-polymerase chain reaction. Localization of the transmembrane protein was analyzed by confocal fluorescence microscopy. The stem cell character of transduced hMSCs was investigated by adipogenic and osteogenic differentiation. Migration capacity was assessed by scratch assays in time-lapse imaging. In vitro specific binding of ligands was tested by fluorescenceactivated cell sorting analysis and by radioligand assay using 18 Ffallypride. Imaging of D2R80A overexpressing hMSC transplanted into athymic rats was performed by PET using 18 F-fallypride. Results: hMSCs showed long-term overexpression of D2R80A. As expected, the fluorescence signal suggested the primary localization of the protein in the membrane of the transduced cells. hMSC and D2R80A retained their stem cell character demonstrated by their osteogenic and adipogenic differentiation capacity and their proliferation and migration behavior. For in vitro hMSCs, at least 90% expressed the D2R80A transgene and hMSC-D2R80A showed specific binding of 18 F-fallypride. In vivo, a specific signal was detected at the transplantation site up to 7 d by PET. Conclusion: The mutant of the dopamine type 2 receptor (D2R80A) is a potent reporter to detect hMSCs by PET in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.