Path reweighting is a principally exact method to estimate dynamic properties from biased simulations—provided that the path probability ratio matches the stochastic integrator used in the simulation. Previously reported path probability ratios match the Euler–Maruyama scheme for overdamped Langevin dynamics. Since molecular dynamics simulations use Langevin dynamics rather than overdamped Langevin dynamics, this severely impedes the application of path reweighting methods. Here, we derive the path probability ratio ML for Langevin dynamics propagated by a variant of the Langevin Leapfrog integrator. This new path probability ratio allows for exact reweighting of Langevin dynamics propagated by this integrator. We also show that a previously derived approximate path probability ratio Mapprox differs from the exact ML only by O(ξ4Δt4) and thus yields highly accurate dynamic reweighting results. (Δt is the integration time step, and ξ is the collision rate.) The results are tested, and the efficiency of path reweighting is explored using butane as an example.
Conformational dynamics is essential to biomolecular processes. Markov State Models (MSM) are widely used to elucidate dynamic properties of molecular systems from unbiased Molecular Dynamics (MD). However, the implementation of reweighting schemes for MSMs to analyze biased simulations is still at an early stage of development. Several dynamical reweighing approaches have been proposed, which can be classified as approaches based on (i) Kramers rate theory, (ii) rescaling of the probability density flux, (iii) reweighting by formulating a likelihood function, (iv) path reweighting. We present the state-of-the-art and discuss the methodological differences of these methods, their limitations and recent applications.
Transition metal complexes bearing terminal oxido ligands are quite common, yet group 11 terminal oxo complexes remain elusive. Here we show that excited coinage metal atoms M (M = Au, Ag, Cu) react with OF2 to form hypofluorites FOMF and group 11 oxygen metal fluorides OMF2, OAuF and OAgF. These compounds have been characterized by IR matrix-isolation spectroscopy in conjunction with state-of-the-art quantum-chemical calculations. The oxygen fluorides are formed by photolysis of the initially prepared hypofluorites. The linear molecules OAgF and OAuF have a 3Σ − ground state with a biradical character. Two unpaired electrons are located mainly at the oxygen ligand in antibonding O−M π* orbitals. For the 2B2 ground state of the OMIIIF2 compounds only an O−M single bond arises and a significant spin-density contribution was found at the oxygen atom as well.
The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\tilde \nu $=850.7 and 1805.0 cm(-1) and its photo-behavior.
The water-soluble inositol phosphates (InsPs) represent a functionally diverse group of small-molecule messengers involved in a myriad of cellular processes. Despite their centrality, our understanding of human InsP metabolism is incomplete because the available analytical toolset to characterize and quantify InsPs in complex samples is limited. Here, we have synthesized and applied symmetrically and unsymmetrically 13 C-labeled myo-inositol and inositol phosphates. These probes were utilized in combination with nuclear magnetic resonance spectroscopy (NMR) and capillary electrophoresis mass spectrometry (CE-MS) to investigate InsP metabolism in human cells. The labeling strategy provided detailed structural information via NMR�down to individual enantiomers�which overcomes a crucial blind spot in the analysis of InsPs. We uncovered a novel branch of InsP dephosphorylation in human cells which is dependent on MINPP1, a phytase-like enzyme contributing to cellular homeostasis. Detailed characterization of MINPP1 activity in vitro and in cells showcased the unique reactivity of this phosphatase. Our results demonstrate that metabolic labeling with stable isotopomers in conjunction with NMR spectroscopy and CE-MS constitutes a powerful tool to annotate InsP networks in a variety of biological contexts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.