Previous studies have failed to identify mutations in the Wilson's disease gene ATP7B in a significant number of clinically diagnosed cases. This has led to concerns about genetic heterogeneity for this condition but also suggested the presence of unusual mutational mechanisms. We now present our findings in 181 patients from the United Kingdom with clinically and biochemically confirmed Wilson's disease. A total of 116 different ATP7B mutations were detected, 32 of which are novel. The overall mutation detection frequency was 98%. The likelihood of mutations in genes other than ATP7B causing a Wilson's disease phenotype is therefore very low. We report the first cases with Wilson's disease due to segmental uniparental isodisomy as well as three patients with three ATP7B mutations and three families with Wilson's disease in two consecutive generations. We determined the genetic prevalence of Wilson's disease in the United Kingdom by sequencing the entire coding region and adjacent splice sites of ATP7B in 1000 control subjects. The frequency of all single nucleotide variants with in silico evidence of pathogenicity (Class 1 variant) was 0.056 or 0.040 if only those single nucleotide variants that had previously been reported as mutations in patients with Wilson's disease were included in the analysis (Class 2 variant). The frequency of heterozygote, putative or definite disease-associated ATP7B mutations was therefore considerably higher than the previously reported occurrence of 1:90 (or 0.011) for heterozygote ATP7B mutation carriers in the general population (P < 2.2 × 10(-16) for Class 1 variants or P < 5 × 10(-11) for Class 2 variants only). Subsequent exclusion of four Class 2 variants without additional in silico evidence of pathogenicity led to a further reduction of the mutation frequency to 0.024. Using this most conservative approach, the calculated frequency of individuals predicted to carry two mutant pathogenic ATP7B alleles is 1:7026 and thus still considerably higher than the typically reported prevalence of Wilson's disease of 1:30 000 (P = 0.00093). Our study provides strong evidence for monogenic inheritance of Wilson's disease. It also has major implications for ATP7B analysis in clinical practice, namely the need to consider unusual genetic mechanisms such as uniparental disomy or the possible presence of three ATP7B mutations. The marked discrepancy between the genetic prevalence and the number of clinically diagnosed cases of Wilson's disease may be due to both reduced penetrance of ATP7B mutations and failure to diagnose patients with this eminently treatable disorder.
Objective There are marked mitochondrial abnormalities in parkin-knock out drosophila and other model systems. The aim of our study was to determine mitochondrial function and morphology in parkin-mutant patients. We also investigated whether pharmacological rescue of impaired mitochondrial function may be possible in parkin-mutant human tissue. Methods We used three sets of techniques, namely biochemical measurements of mitochondrial function, quantitative morphology and live cell imaging of functional connectivity to assess the mitochondrial respiratory chain, the outer shape and connectivity of the mitochondria and their functional inner connectivity in fibroblasts from patients with homozygous or compound heterozygous parkin mutations. Results Parkin-mutant cells had lower mitochondrial complex I activity and complex I linked ATP-production which correlated with a higher degree of mitochondrial branching, suggesting that the functional and morphological effects of parkin are related. Knockdown of parkin in control fibroblasts confirmed that parkin deficiency is sufficient to explain these mitochondrial effects. In contrast, 50% knockdown of parkin, mimicking haploinsufficiency in human patient tissue, did not result in impaired mitochondrial function or morphology. Fluorescence recovery after photobleaching (FRAP) assays demonstrated a lower level of functional connectivity of the mitochondrial matrix which further worsened after rotenone exposure. Treatment with experimental neuroprotective compounds resulted in a rescue of the mitochondrial membrane potential. Interpretation Our study demonstrates marked abnormalities of mitochondrial function and morphology in parkin-mutant patients and provides proof of principle data for the potential usefulness of this new model system as a tool to screen for disease-modifying compounds in genetically homogenous parkinsonian disorders.
72 consecutive patients with suspected parkinsonian syndromes (PS) were studied by dopamine transporter (DAT) and D2 receptor SPECT in order to evaluate the accuracy of combined SPECT imaging. In the follow-up, the patients were diagnosed as having Parkinson's disease (PD, n = 25), dementia with Lewy bodies (DLB, n = 6), multiple system atrophy (MSA, n = 13), progressive supranuclear palsy (PSP, n = 8), corticobasal degeneration (CBD, n = 9), and essential tremor (ET, n = 11). Using the iteratively estimated optimal cutoffs, DAT was reduced in 57/61 PS patients, whereas all ET patients were identified as "normal". Reduced D2 receptor binding had 7/13 patients with MSA, 6/8 patients with PSP, 2/9 patients with CBD and no ET, PD or DLB patients. FP-CIT SPECT allows an accurate detection of nigrostriatal affection in neurodegenerative PS. IBZM SPECT is useful to approve the diagnosis of PSP and MSA although a normal finding cannot exclude an atypical PS. IBZM SPECT seems to be of restricted value in CBD.
Alterations in presynaptic and postsynaptic dopaminergic system and cerebral glucose metabolism in corticobasal degeneration (CBD) were assessed to evaluate the potential usefulness of different imaging methods for CBD. (123)I-FP-CIT/(123)I-beta-CIT SPECT and (123)I-IBZM SPECT as well as (18)F-FDG PET were performed in eight CBD patients. Decreased presynaptic dopamine transporter binding was found in all CBD patients while D2 receptor binding was reduced in only one patient. (18)F-FDG PET displayed a contralateral hypometabolism in cortical and subcortical areas in seven out of eight patients. Our results demonstrate that glucose metabolism and DAT are reduced, while D2 receptors may be frequently preserved in CBD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.