Biological inorganic carbon fixation proceeds through a number of fundamentally different autotrophic pathways that are defined by specific key enzymatic reactions. Detection of the enzymatic genes in (meta)genomes is widely used to estimate the contribution of individual organisms or communities to primary production. Here we show that the sulfur-reducing anaerobic deltaproteobacterium is capable of both acetate oxidation and autotrophic carbon fixation, with the tricarboxylic acid cycle operating either in the oxidative or reductive direction, respectively. Under autotrophic conditions, the enzyme citrate synthase cleaves citrate adenosine triphosphate independently into acetyl coenzyme A and oxaloacetate, a reaction that has been regarded as impossible under physiological conditions. Because this overlooked, energetically efficient carbon fixation pathway lacks key enzymes, it may function unnoticed in many organisms, making bioinformatical predictions difficult, if not impossible.
The composition of diet strongly affects acid–base homeostasis. Western diets abundant in acidogenic foods (meat and cheese) and deficient in alkalizing foods (fruits and vegetables) increase dietary acid load (DAL). A high DAL has been associated with numerous health repercussions, including cardiovascular disease and type-2-diabetes. Plant-based diets have been associated with a lower DAL; however, the number of trials exploring this association is limited. This randomized-controlled trial sought to examine whether an isocaloric vegan diet lowers DAL as compared to a meat-rich diet. Forty-five omnivorous individuals were randomly assigned to a vegan diet (n = 23) or a meat-rich diet (n = 22) for 4 weeks. DAL was determined using potential renal acid load (PRAL) and net endogenous acid production (NEAP) scores at baseline and after 3 and 4 weeks, respectively. After 3 weeks, median PRAL (−23.57 (23.87)) and mean NEAPR (12.85 ± 19.71) scores were significantly lower in the vegan group than in the meat-rich group (PRAL: 18.78 (21.04) and NEAPR: 60.93 ± 15.51, respectively). Effects were mediated by a lower phosphorus and protein intake in the vegan group. Our study suggests that a vegan diet is a potential means to reduce DAL, whereas a meat-rich diet substantially increases the DAL burden.
The Cytotoxic Necrotizing Factor Y (CNFY) is produced by the gram‐negative, enteric pathogen Yersinia pseudotuberculosis. The bacterial toxin belongs to a family of deamidases, which constitutively activate Rho GTPases, thereby balancing inflammatory processes. We identified heparan sulfate proteoglycans as essential host cell factors for intoxication with CNFY. Using flow cytometry, microscopy, knockout cell lines, pulsed electron–electron double resonance, and bio‐layer interferometry, we studied the role of glucosaminoglycans in the intoxication process of CNFY. Especially the C‐terminal part of CNFY, which encompasses the catalytic activity, binds with high affinity to heparan sulfates. CNFY binding with the N‐terminal domain to a hypothetical protein receptor may support the interaction between the C‐terminal domain and heparan sulfates, which seems sterically hindered in the full toxin. A second conformational change occurs by acidification of the endosome, probably allowing insertion of the hydrophobic regions of the toxin into the endosomal membrane. Our findings suggest that heparan sulfates play a major role for intoxication within the endosome, rather than being relevant for an interaction at the cell surface.
The Cytotoxic Necrotizing Factor Y (CNFY) is produced by the gram-negative, enteric pathogen Yersinia pseudotuberculosis. The bacterial toxin belongs to a family of deamidases, which constitutively activate Rho GTPases, thereby balancing inflammatory processes. We identified heparan sulfate proteoglycans as essential host cell factors for intoxication with CNFY. Using flow cytometry, microscopy, knockout cell lines, pulsed electron-electron double resonance and bio-layer interferometry, we studied the role of glucosaminoglycans in the intoxication process of CNFY. To analyze toxin-glucosaminoglycan interaction we utilized a truncated CNFY (CNFY 709-1014 ).Especially this C-terminal part of CNFY, which encompasses the catalytic activity, binds with high affinity to heparan sulfates. CNFY binding with the N-terminal domain to its protein receptor seems to induce a first conformational change supporting the interaction between the C-terminal domain and heparan sulfates, which seems sterically hindered in the full toxin. A second conformational change occurs by acidification of the endosome, probably allowing insertion of the hydrophobic regions of the toxin into the endosomal membrane. Our findings suggest that heparan sulfates play a major role for intoxication within the endosome, rather than being relevant for an interaction at the cell surface. Lastly, cleavage of heparin sulfate chains by heparanase is likely required for efficient uptake of the toxic enzyme into the cytosol of mammalian cells. Author SummaryThe RhoA deamidating Cytotoxic Necrotizing Factor Y (CNFY) from Yersinia pseudotuberculosis is a crucial virulence factor that is important for successful infection 3 of mammalian cells by the pathogen. The mode of action by which CNFY is able to intoxicate cells can be divided into the following steps: Binding to the cell surface, internalization, translocation from the endosome to the cytosol and deamidation of RhoA. We show, that CNFY uses heparan sulfates to maximize the amount of molecules entering the cytosol. While not being necessary for toxin binding and uptake, the sugars hold a key role in the intoxication process. We show that CNFY undergoes a conformational change at a low endosomal pH, allowing the C-terminal domain to be released from the endosomal membrane by the action of heparanase. This study reveals new insights into the CNFY-host interaction and promotes understanding of the complex intoxication process of bacterial toxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.