Errors in the representation of clouds in convection‐permitting numerical weather prediction models can be introduced by different sources. These can be the forcing and boundary conditions, the representation of orography, the accuracy of the numerical schemes determining the evolution of humidity and temperature, but large contributions are due to the parametrization of microphysics and the parametrization of processes in the surface and boundary layers. These schemes typically contain several tunable parameters that are either not physical or only crudely known, leading to model errors. Traditionally, the numerical values of these model parameters are chosen by manual model tuning. More objectively, they can be estimated from observations by the augmented state approach during the data assimilation. Alternatively, in this work, we look at the problem of parameter estimation through an artificial intelligence lens by training two types of artificial neural network (ANN) to estimate several parameters of the one‐dimensional modified shallow‐water model as a function of the observations or analysis of the atmospheric state. Through perfect model experiments we show that Bayesian neural networks (BNNs) and Bayesian approximations of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations. The sensitivity to the number of ensemble members, observation coverage and neural network size is shown. Additionally, we use the method of layer‐wise relevance propagation to gain insight into how the ANNs are learning and discover that they naturally select only a few grid points that are subject to strong winds and rain to make their predictions of chosen parameters.
<p>Parametrization of microphysics as well as parametrization of processes in the surface and boundary layers typically contain several tunable parameters. The parameters are not observed and are only crudely known. Traditionally, the numerical values of these model parameters are chosen by manual model tuning, leading to model errors in convection permitting numerical weather prediction models. More objectively, parameters can be estimated from observations by the augmented state approach during the data assimilation or by combing data assimilation with machine learning (ML).</p> <p>If the parameters are updated objectively according to observations, they are flexible to adjust to recent conditions, their uncertainty is considered, and therefore the uncertainty of the model output is more accurate. To illustrate benefits of online augmented state approach, Ruckstuhl and Janjic (2020) show in an operational convection-permitting configuration that the prediction of clouds and precipitation is improved if the two-dimensional roughness length parameter is estimated. This could lead to improved forecasts of up to 6 h of clouds and precipitation. However, when parameters are estimated by the augmented state approach, stochastic model for the parameters needs to be pre-specified to keep the spread in parameters. Alternatively, Legler and Janjic (2022) investigate a possibility of using data assimilation for the state estimation while using ML for parameter estimation in order to overcome this problem. We train two types of artificial neural networks as a function of the observations or analysis of the atmospheric state. &#160;The test case uses perfect model experiments with the one-dimensional modified shallow-water model, which was designed to mimic important properties of convection. Through perfect model experiments we show that Bayesian neural networks (BNNs) and ensemble of point estimate neural networks (NNs) are able to estimate model parameters and their relevant statistics. The estimation of parameters combined with data assimilation for the state decreases the initial state errors even when assimilating sparse and noisy observations.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.