Biomaterials releasing silver (Ag) are of interest because of their ability to inhibit pathogenic bacteria including antibiotic-resistant strains. In order to investigate the potential of nanometre-thick Ag polymer (Ag/amino-hydrocarbon) nanocomposite plasma coatings, we studied a comprehensive range of factors such as the plasma deposition process and Ag cation release as well as the antibacterial and cytocompatible properties. The nanocomposite coatings released most bound Ag within the first day of immersion in water yielding an antibacterial burst. The release kinetics correlated with the inhibitory effects on the pathogens Pseudomonas aeruginosa or Staphylococcus aureus and on animal cells that were in contact with these coatings. We identified a unique range of Ag content that provided an effective antibacterial peak release, followed by cytocompatible conditions soon thereafter. The control of the in situ growth conditions for Ag nanoparticles in the polymer matrix offers the possibility to produce customized coatings that initially release sufficient quantities of Ag ions to produce a strong adjacent antibacterial effect, and at the same time exhibit a rapidly decaying Ag content to provide surface cytocompatibility within hours/days. This approach seems to be favourable with respect to implant surfaces and possible Ag-resistance/tolerance built-up.
In the field of human mesenchymal stromal cell (MSC) research, quantitative real-time reverse transcription-polymerase chain reaction (qPCR) is the method of choice to study changes in gene expression patterns upon differentiation, application of stimuli, or of factors such as inhibitors or siRNAs. To reliably detect small changes, the use of a reference gene (RG) that is stably expressed under all conditions is essential. The large number of different RGs used in the field and the lack of validation of their suitability make the comparison between studies impossible. Therefore, this work aims to establish one single RG for mesodermal differentiation studies that use MSCs. Seven commonly used RGs (glyceraldehyde-3-phosphate dehydrogenase [GAPDH], ribosomal protein L13a [RPL13a], beta-actin [ACTB], tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta-polypeptide [YWHAZ], eukaryotic translational elongation factor 1 alpha [EF1α], β2-microglobulin [B2M], and 18S ribosomal RNA [18S]) were investigated concerning their mRNA expression stability during expansion of bone marrow-derived MSCs up to four passages as well as during their adipo-, chondro-, and osteogenenic differentiation on days 9, 16, and 22 after induction. RPL13a was validated for qPCR studies of MSCs (bone marrow- and placenta-derived) and, additionally, for primary human bone cells (HBCs) and the osteosarcoma cell line MG-63. GAPDH and ACTB, the two most frequently used RGs, showed the highest expression variance. The superior performance of RPL13a should make it the RG of choice for all MSC studies addressing mesodermal differentiation.
Human bone marrow-derived mesenchymal stem cells have the potential to differentiate into several cell types such as osteoblasts, chondrocytes, and adipocytes. When cultured under appropriate medium conditions stem cells can be directed toward the osteoblast lineage in vitro. Progression of osteogenic differentiation is accompanied by changes in the expression pattern of several marker proteins including bone-specific alkaline phosphatase (bALP), collagen I (Col I), and osteocalcin (OC) and can be analyzed by well-established methods like immunohistochemical staining and quantitative RT-PCR. Furthermore, expression of fluorescent protein driven by an osteogenesis promoter facilitates online monitoring of proceeding osteogenic differentiation in transiently transfected human bone marrow-derived cells. In the present study we established a new double reporter gene construct comprising OC promoter-driven expression of green fluorescent protein and constitutive expression of red fluorescent protein-tagged histone H2B for transient transfection of primary human bone cells (HBCs). Osteogenic differentiation of transiently transfected cells was visualized by fluorescence microscopy. Immunohistochemical analysis and RT-PCR confirmed the progression into the osteo-specific lineage of transfected cells. Transfection efficiency was determined by fluorescence-activated cell sorting (FACS).
Cell shape and regulation of biological processes such as proliferation and differentiation are to a large degree connected. Investigation of the possible relationship between cell shape and function is therefore important for developing new material concepts for medical applications as well as developing novel cell based sensors. Cell spreading requires a firm contact with the underlying substrate, with focal contacts (FC) being the primary sites of adhesion. They consist of a large number of clustered transmembrane proteins (integrins). FC integrins connect the cell cytoskeleton with the cell substratum. It has been demonstrated that cell spreading increases osteoblast differentiation in pre-osteoblastic progenitors. The gradual process of osteogenesis can be followed by different proteins being expressed at various time points, comprising early (e.g., bone-specific alkaline phosphatase (bALP)) and late genes (e.g., osteocalcin (OC)). In the present study we have used immunohistochemistry and RT-PCR to determine osteogenic differentiation of human bone cells (HBC). For online monitoring, fluorescently-tagged actin and vinculin were used for transfection of HBCs. Transfection of HBCs with an OC promoter gene construct allowed us to online monitor the gradual process of osteogenesis. We found distinct changes in cell architecture upon osteogenic differentiation thus providing evidence for the connection between cell shape and functional state.
Due to the increasing prevalence of resistance of bacteria to antibiotics and antiseptic methods, new strategies to prevent colonization of biomaterials are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.