The first example of a diboryl corrole complex, [(BF2)2(Br8T(4-F-P)C)](-) (Br8T(4-F-P)C = trianion of 2,3,7,8,12,13,17,18-octabromo-5,10,15-tris(4-fluorophenyl)corrole), has been isolated using the strongly electron-withdrawing and sterically crowded triaryl octabromocorrole ligand. Density functional theory (DFT) calculations show that the hydrolysis reaction producing the partially hydrolyzed complexes [B2OF2(Cor)](-) is more favored for the less sterically crowded triaryl corrole complexes. Monoboryl complexes BF2(H2Cor) (Cor = trianions of 5,10,15-triphenylcorrole (TPC), 5,10,15-tris(4-methylphenyl)corrole (T(4-CH3-P)C), 5,10,15-tris(4-trifluoromethylphenyl)corrole (T(4-CF3-P)C), and 5,10,15-tris(pentafluorophenyl)corrole (TPFPC)) were prepared and characterized. The experimental data are consistent with an out-of-plane dipyrrin coordination mode for these complexes, and DFT optimizations suggest that internal BF···HN hydrogen bonding may be significant in stabilizing these complexes. Further examples of the anionic diboron corrole [B2OF2(Cor)](-) containing the electron-withdrawing 5,10,15-tris(pentafluorophenyl)corrole (TPFPC) and the sterically hindered 10-(4-methoxyphenyl)-5,15-dimesitylcorrole (Mes2(4-MeOP)C) trianions are reported.
Allyl calcium compounds of different chain lengths [Ca(R) 2 (THF) x ] (x = 0.15-0.25 (1-Ca, 3-Ca), 0.25-0.75 (2-Ca)) were synthesized by salt metathesis of CaI 2 with allylpotassium reagents [K(R)] (R = n-butenyl (1-K), isobutenyl (2-K), n-hexenyl (3-K)), prepared from the corresponding R-olefin and Schlosser base. The new calcium derivatives were obtained in nearly quantitative yields. 1-Ca and 2-Ca could be crystallized as triglyme adducts (triglyme: tris-(ethylene glycol)dimethyl ether) and structurally characterized by single-crystal X-ray diffraction. All potassium precursors [K(R)] were also isolated and characterized by 1 H and 13 C NMR spectroscopy. The solution properties in THF are in agreement with an η 3 -coordination mode of the allyl moiety for all isolated compounds. For the potassium reagents 1-K and 3-K, endo/exo equilibrium distributions of >99:<1 and 85:15 were observed, whereas for the calcium compounds 1-Ca and 3-Ca, distributions of 60:40 and 42:58 were found at 25 °C, respectively. This distribution pattern is discussed in the context of the behavior found for alkali metal analogues.
The synthesis and attempted isolation of neutral bis(allyl)strontium [Sr(C(3)H(5))(2)] (1) resulted in the isolation of potassium tris(allyl)strontiate K[Sr(C(3)H(5))(3)] (2). In situ generated 1 shows a pronounced Brønsted basicity, inducing polymerisation of THF. Ate complex 2 crystallises as [K(THF)(2){Sr(C(3)H(5))(3)}(THF)](∞) (2·(THF)(3)). The salt-like solid state structure of 2·(THF)(3) comprises a two-dimensional network of (μ(2)-η(3):η(3)-C(3)H(5))(-) bridged potassium and strontium centres. Synthesis of allyl complexes 1 and 2 utilised SrI(2), [Sr(TMDS)(2)] (3) (TMDS = tetramethyldisilazanide), and [Sr(HMDS)(2)] (HMDS = hexamethyldisilazanide) as strontium precursors. The solid state structure of previously reported [Sr(TMDS)(2)] (3) was established by X-ray single crystal analysis as a dissymmetric dimer of [Sr(2)(TMDS)(4)(THF)(3)] (3·(THF)(3)) with multiple Si-HSr agostic interactions. The presence of ether ligands (THF, 18-crown-6) influenced the Si-HSr resonances in the NMR spectra of the amido complex 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.