During the development of the haustorium, searching hyphae of the parasite and the host parenchyma cells are connected by plasmodesmata. Using transgenic tobacco plants expressing a GFP-labelled movement protein of the tobacco mosaic virus, it was demonstrated that the interspecific plasmodesmata are open. The transfer of substances in the phloem from host to the parasite is not selective. After simultaneous application of (3)H-sucrose and (14)C-labelled phloem-mobile amino acids, phytohormones, and xenobiotica to the host, corresponding percentages of the translocated compounds are found in the parasite. An open continuity between the host phloem and the Cuscuta phloem via the haustorium was demonstrated in CLSM pictures after application of the phloem-mobile fluorescent probes, carboxyfluorescein (CF) and hydroxypyrene trisulphonic acid (HPTS), to the host. Using a Cuscuta bridge (14)C-sucrose and the virus PVY(N) were transferred from one host plant to the another. The results of translocation experiments with labelled compounds, phloem-mobile dyes and the virus should be considered as unequivocal evidence for a symplastic transfer of phloem solutes between Cuscuta species and their compatible hosts.
An analytical anharmonic six-dimensional three-sheeted potential energy surface for the ground and first excited states of the ammonia cation has been developed which is tailored to model the ultrafast photoinduced dynamics. Selected ab initio cuts, obtained by multireference configuration interaction calculations, have been used to determine the parameters of a diabatic representation for this Jahn-Teller and pseudo-Jahn-Teller system. The model includes higher-order coupling terms both for the Jahn-Teller and for the pseudo-Jahn-Teller matrix elements. The relaxation to the ground state is possible via dynamical pseudo-Jahn-Teller couplings involving the asymmetric bending and stretching coordinates. The photoelectron spectrum of NH3 and the internal conversion dynamics of NH3+ have been determined by wave packet propagation calculations employing the multiconfigurational time-dependent Hartree method. Three different time scales are found in the dynamics calculations for the second absorption band. The ultrafast Jahn-Teller dynamics of the two excited states occurs on a 5 fs time scale. The major part of the internal conversion to the ground state takes place within a short time scale of 20 fs. This fast internal conversion is, however, incomplete and the remaining excited state population does not decay completely even within 100 fs.
Cyanobacterial toxins have adverse effects on both terrestrial and aquatic plants. Microcystins are cyclic heptapeptides and an important group of cyanotoxins. When lake water contaminated with cyanobacterial blooms is used for spray irrigation, these toxins can come in contact with agricultural plants. During the exposure to these toxins, reactive oxygen species can form. These reactive oxygen species have a strong reactivity and are able to interact with other cellular compounds (lipids, protein, and DNA). Plants have antioxidative systems that will limit the negative effects caused by reactive oxygen species. These systems consist of enzymes, such as superoxide dismutase, catalase, and ascorbate peroxidase, and nonenzymatic substances, such as reduced glutathione or vitamins. The aim of the present study was to investigate the effects of cyanobacterial toxins (microcystins and anatoxin-a) and cyanobacterial cell-free crude extract on alfalfa (Medicago sativa) seedlings. Inhibition of germination and root growth was observed with toxin concentrations of 5.0 microg/L. Also, oxidative damage, such as lipid peroxidation, was detected after the exposure of alfalfa seedlings to the toxin. Reactive oxygen detoxifying enzymes were elevated, showing a marked response in alfalfa to oxidative stress caused by the exposure to cyanobacterial metabolites that might influence the growth and development of these plants negatively.
Transgenic tobacco plants expressing green fluorescent protein (GFP) under the control of the companion cell-specific promoter, AtSUC2, were parasitized by the holoparasite Cuscuta reflexa (dodder). GFP, moving in the translocation stream of the host, was transferred to the Cuscuta phloem via the absorbing hyphae of the parasite. An identical pattern of transfer was observed for the phloem-mobile probe, carboxyfluorescein. Following uptake by the parasite, GFP was translocated and unloaded from the Cuscuta phloem in meristematic sink tissues. Contrary to published data, these observations suggest the presence of a functional symplastic pathway between Cuscuta and its hosts, and demonstrate a considerable capacity for macromolecular exchange between plant species.
Arabidopsis thaliana and Cuscuta spec. represent a compatible host-parasite combination. Cuscuta produces a haustorium that penetrates the host tissue. In early stages of development the searching hyphae on the tip of the haustorial cone are connected to the host tissue by interspecific plasmodesmata. Ten days after infection, translocation of the fluorescent dyes, Texas Red (TR) and 5,6-carboxyfluorescein (CF), demonstrates the existence of a continuous connection between xylem and phloem of the host and parasite. Cuscuta becomes the dominant sink in this host-parasite system. Transgenic Arabidopsis plants expressing genes encoding the green fluorescent protein (GFP; 27 kDa) or a GFP-ubiquitin fusion (36 kDa), respectively, under the companion cell (CC)-specific AtSUC2 promoter were used to monitor the transfer of these proteins from the host sieve elements to those of Cuscuta. Although GFP is transferred unimpedly to the parasite, the GFP-ubiquitin fusion could not be detected in Cuscuta. A translocation of the GFP-ubiquitin fusion protein was found to be restricted to the phloem of the host, although a functional symplastic pathway exists between the host and parasite, as demonstrated by the transport of CF. These results indicate a peripheral size exclusion limit (SEL) between 27 and 36 kDa for the symplastic connections between host and Cuscuta sieve elements. Forty-six accessions of A. thaliana covering the entire range of its genetic diversity, as well as Arabidopsis halleri, were found to be susceptible towards Cuscuta reflexa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.