Retroviral vectors derived from amphotropic murine leukemia viruses (MLV) mediate gene transfer into almost all human cells and are thus not suitable for in vivo applications in gene therapy in which cell-specific gene delivery is required. We and others recently reported the generation of MLV-derived vectors pseudotyped by variants of the envelope glycoproteins (Env) of human immunodeficiency virus type 1 (HIV-1), thus displaying the CD4-dependent tropism of the parental lentivirus (Mammano et al., 1997, J. Virol. 71, 3341-3345; Schnierle et al., 1997, Proc. Natl. Acad. Sci. USA 76, 8640-8645). However, because of their HIV-1-derived envelopes these vectors are neutralized by HIV-specific antibodies present in some infected patients. To circumvent this problem, we pseudotyped MLV capsid particles with variants of Env proteins derived from the apathogenic simian immunodeficiency virus (SIVagm) of African green monkeys (AGM; Chlorocebus pygerythrus). Truncation of the C-terminal domain of the transmembrane protein was found to be necessary to allow formation of infectious pseudotype vectors. These [MLV(SIVagm)] vectors efficiently transduced various human CD4-expressing cell lines using the coreceptors CCR5 and Bonzo to enter target cells. Moreover, they were resistant to neutralization by antibodies directed against HIV-1. Therefore, [MLV(SIVagm)] vectors will be useful to study the mechanisms of SIVagm cell entry and for the selective gene transfer into CD4+ T-cells of AIDS patients.
Swift diagnosis of Plasmodium falciparum malaria in areas where the disease is not endemic is frequently complicated by the lack of experience on the side of involved laboratory personal. Diagnostic tools based on the dipstick principle for the detection of plasmodial histidine-rich protein 2 (HRP-2) and parasite-specific lactate dehydrogenase (pLDH), respectively, have become available for the qualitative detection of P. falciparum malaria. In order to evaluate two of the currently available assays, specimens from 231 patients were screened during a prospective multicenter study. Among the screened specimens, samples from 53 patients (22.9%) were positive for P. falciparum malaria by microscopy and/or PCR. While the test kit based on the detection of HRP-2 performed with a sensitivity of 92.5% and a specificity of 98.3%, the kit for the detection of pLDH showed a sensitivity of 88.5% and a specificity of 99.4%. Dipstick tests have the potential of enhancing speed and accuracy of the diagnosis of P. falciparum malaria, especially if nonspecialized laboratories are involved.
The improvement of gene transfer efficiency in growth-arrested cells using human immunodeficiency virus type 1 (HIV-1)-derived vectors led to the development of vectors derived from other members of the lentivirus family. Here we report the generation of a lentiviral vector derived from the apathogenic molecular virus clone SIVagm3mc of the simian immunodeficiency virus from African green monkeys (Cercocebus pygerythrus). Upon pseudotyping with the G-protein of vesicular stomatitis virus (VSV-G), the SIVagm-derived vector was shown to transduce proliferating and growth-arrested mammalian cell lines, including human cells. After in vivo inoculation into the striatum of the adult rat brain, the vector was shown to transduce terminally differentiated neurons and oligodendrocytes as well as quiescent and reactive astrocytes. Moreover, SIVagm transfer vector mRNA was efficiently packaged by HIV-1 vector particles. Homologous [SIV(SIV)] vectors generated by using the SIVagm-derived envelope glycoproteins allowed selective gene transfer into human CD4(+)/CCR5(+) cells. Thus, the SIVagm3mc-derived vector is a useful alternative to HIV-1-derived lentiviral vectors in somatic gene therapy.
Retroviral vectors derived from murine leukemia virus (MLV) have been pseudotyped with a variant of the envelope glycoprotein (Env) of nonpathogenic simian immunodeficiency virus from African green monkeys (SIVagm) to result in [MLV(SIVagm-wt)] vector particles. The variant env gene encodes a full-length surface envelope glycoprotein (SU) and a C-terminally truncated transmembrane protein (TM). To change the coreceptor usage of this vector from CCR5 to CXCR4, which is predominant on human CD4-positive lymphocytes, the putative V3-loop of SIVagm SU was replaced by that of the T cell tropic HIV-1 variant BH10. The resulting [MLV(SIVagm-X4)] vectors were shown to specifically transduce CD4/CXCR4-positive cell lines, demonstrating the equivalent function in cell entry and choice of coreceptor usage of the V3-loops of SIVagm and HIV-1. These modified vectors were able to transduce primary human lymphocytes and were resistant to neutralization by sera from HIV-1-infected individuals. The [MLV(SIVagm-X4)] pseudotype vector generated is thus a promising candidate vector, e.g., for in vivo gene therapy of HIV-1 infection.
The success of several gene therapeutic approaches requires efficient transduction of human primary T lymphocytes. For this it is important to enhance the transduction efficiency, and this can be achieved by various means, mainly technical development of transduction procedures and use of different vectors and vector pseudotypes. We analyzed the transduction efficiency of an HIV-1 vector encoding enhanced green fluorescent protein (GFP) as a marker gene and pseudotyped with the envelopes of MLV-A, MLV-10A1, GaLV, RD114, and VSV for human primary T lymphocytes in comparison to an MLV vector pseudotyped with the same envelopes. Pseudotyping of the MLV vector with the envelopes of 10A1 and GaLV resulted in efficient transduction of preactivated human primary T lymphocytes (32.4% and 32.7% CD3+/GFP+ cells, respectively) while MLV-A (14.0%), RD114 (8.8%), and VSV (1.5%) envelopes were less efficient when using titrated vector stocks equilibrated to a multiplicity of infection of 1. In contrast, the HIV-1 vectors pseudotyped with these envelope proteins transduced preactivated T lymphocytes with similar efficiency (approx. 20% CD3+/GFP+ cells). Thereby, CD4+ and CD8+ T lymphocyte subpopulations were transduced at equivalent levels. The similar performance of the different HIV-1 vector pseudotypes may be due in part to the similar half-lives of the vector particles. Independently of the envelope used for pseudotyping neither the MLV nor the HIV-1 vectors yielded any significant transduction in nonactivated T lymphocytes (below 0.55% of GFP+ cells)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.