Ensuring a comfortable indoor air quality requires a minimum fresh air supply by ventilation. Moreover, the improvement of the air tightness in new and refurbished high performance buildings enhances the role of mechanical ventilation and its importance in further increasing the energy efficiency. Indeed, a reduction of the ventilation load can be achieved by installing air-to-air heat recovery devices, whose potential energy savings can be easily assessed by means of their nominal effectiveness. However, this estimation does not consider the impact on the overall performance of the system, in particular when humidity control is needed. Proper control strategies can be defined on the basis of the indoor latent load to prevent preheating or avoid moisture recovery when dehumidification by cooling is then required. In this work, the energy saving potential of heat recovery systems has been analyzed, considering the impact of different control strategies on both energy and cost savings. The calculations have been generalized using the specific latent load, which allows for the analysis of strategies and savings based on typical utilization categories, without considering in detail all the building characteristics. Representative hourly weather data for 66 European cities have been used to evaluate sensible and total heat recovery devices. The energy and the cost saving results have been mapped per each European Köppen-Geiger climate class and each country, respectively. The proposed strategies based on humidity control can strongly reduce the attractiveness of total heat recovery with respect to sensible heat recovery in terms of energy and cost savings, especially when high specific latent loads are considered.
Radionuclides released to the environment and deposited with or onto snow can be stored over long time periods if ambient temperature stays low, particularly in glaciated areas or high alpine sites. The radionuclides will be accumulated in the snowpack during the winter unless meltwater runoff at the snow base occurs. They will be released to surface waters within short time during snowmelt in spring. In two experiments under controlled melting conditions of snow in the laboratory, radionuclide migration and runoff during melt‐freeze‐cycles were examined. The distribution of Cs‐134 and Sr‐85 tracers in homogeneous snow columns and their fractionation and potential preferential elution in the first meltwater portions were determined. Transport was associated with the percolation of meltwater at ambient temperatures above 0 °C after the snowpack became ripe. Mean migration velocities in the pack were examined for both nuclides to about 0.5 cm hr−1 after one diurnal melt‐freeze‐cycle at ambient temperatures of −2 to 4 °C. Meltwater fluxes were calculated with a median of 1.68 cm hr−1. Highly contaminated portions of meltwater with concentration factors between 5 and 10 against initial bulk concentrations in the snowpack were released as ionic pulse with the first meltwater. Neither for caesium nor strontium preferential elution was observed. After recurrent simulated day‐night‐cycles (−2 to 4 °C), 80% of both radionuclides was released with the first 20% of snowmelt within 4 days. 50% of Cs‐134 and Sr‐85 were already set free after 24 hr. Snowmelt contained highest specific activities when the melt rate was lowest during the freeze‐cycles due to concentration processes in remaining liquids, enhanced by the melt‐freeze‐cycling. This implies for natural snowpack after significant radionuclide releases, that long‐time accumulation of radionuclides in the snow during frost periods, followed by an onset of steady meltwater runoff at low melt rates, will cause the most pronounced removal of the contaminants from the snow cover. This scenario represents the worst case of impact on water quality and radiation exposure in aquatic environments.
Latent heat storages have the ability to contribute to a more sustainable energy supply network. However, phase change materials (PCM) used for latent heat storages often show supercooling. This phenomenon takes place whenever the PCM begins crystallizing below the freezing point and is one of the biggest drawbacks holding back the widespread use of PCM. Nucleation agents (NA) can be used to avoid the supercooling, yet the choice of an effective NA is not straightforward. In this work, molecular dynamics (MD) simulation was tested in order to simulate the crystallization of Octadecane on a NA. The simulation results include density, phase change temperature and enthalpy as well as the crystal structure and lie in good agreement with literature values and the authors’ own experimental data. Further simulations of the crystallization process on different surfaces of homogeneous nuclei acting as a NA were performed. The results reflect the hypothesis that liquid molecules start crystallizing easier on surfaces exposing the whole chain side rather than the chain ends. With the result, that the choice of parameters for the MD simulation represent the Octadecane system reliably and further studies can be performed including heterogeneous NA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.