The industrial use of cryogenic air separation units started more than 120 years ago. Cryogenic air separation processes produce pure nitrogen, oxygen, and argon, as well as other noble gases. In cryogenic air separation units, the produced amounts of nitrogen and oxygen vary between 200 and 40,000 Nm 3 / h and 1000 and 150,000 Nm 3 / h , respectively. Different configurations of this process lead to various amounts of gaseous and liquid products. In addition, the purity of the products is affected by the schematic. Oxygen in gaseous or liquid form is typically used in the metallurgical (e.g., steel) industry, in chemical applications (as oxidizer), in power plants (for oxy-fuel combustion processes), as well as in the medical and aerospace sectors. Nitrogen in gaseous or liquid form is used as inert or flushing gas in the chemical industry and as a coolant for different applications. In this chapter, different schematics of air separation units are analyzed. An exergetic analysis is applied in order to identify the thermodynamic inefficiencies and the processes that cause them. Finally, the systems are evaluated from the economic point of view.
The exponentially growing markets of liquefied natural gas (LNG) require efficient processes for LNG regasification within import terminals. Usually, the regasification of LNG is accomplished by direct or indirect heating. However, integrating LNG regasification into different processes within industrial parks (mainly processes involving low temperatures) is an efficient approach because of the utilization of the low-temperature energy. In some LNG import terminals, integration technologies are already being used. Previous publications showed an increase in the thermodynamic efficiency for systems combining air separation (as an example) and LNG regasification. In addition, the variation in the efficiency as well as the capital investment depends on the schematic and operation conditions. This fact creates great potential for improving the systems. In this chapter, different schematics are evaluated using exergy-based methods in order to improve the effectiveness of complex industrial processes that can involve LNG regasification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.