We consider the problem of constructing optimal designs for model discrimination between competing regression models. Various new properties of optimal designs with respect to the popular $T$-optimality criterion are derived, which in many circumstances allow an explicit determination of $T$-optimal designs. It is also demonstrated, that in nested linear models the number of support points of $T$-optimal designs is usually too small to estimate all parameters in the extended model. In many cases $T$-optimal designs are usually not unique, and in this situation we give a characterization of all $T$-optimal designs. Finally, $T$-optimal designs are compared with optimal discriminating designs with respect to alternative criteria by means of a small simulation study.Comment: Published in at http://dx.doi.org/10.1214/08-AOS635 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
We investigate likelihood ratio contrast tests for dose response signal detection under model uncertainty, when several competing regression models are available to describe the dose response relationship. The proposed approach uses the complete structure of the regression models, but does not require knowledge of the parameters of the competing models. Standard likelihood ratio test theory is applicable in linear models as well as in nonlinear regression models with identifiable parameters. However, for many commonly used nonlinear dose response models the regression parameters are not identifiable under the null hypothesis of no dose response and standard arguments cannot be used to obtain critical values. We thus derive the asymptotic distribution of likelihood ratio contrast tests in regression models with a lack of identifiability and use this result to simulate the quantiles based on Gaussian processes. The new method is illustrated with a real data example and compared to existing procedures using theoretical investigations as well as simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.