A series of heteroleptic copper(I) complexes with bidentate PP and NN chelate ligands was prepared and successfully applied as photosensitizers in the light-driven production of hydrogen, by using [Fe3(CO)12] as a water-reduction catalyst (WRC). These systems efficiently reduces protons from water/THF/triethylamine mixtures, in which the amine serves as a sacrificial electron donor (SR). Turnover numbers (for H) up to 1330 were obtained with these fully noble-metal-free systems. The new complexes were electrochemically and photophysically characterized. They exhibited a correlation between the lifetimes of the MLCT excited state and their efficiency as photosensitizers in proton-reduction systems. Within these experiments, considerably long excited-state lifetimes of up to 54 μs were observed. Quenching studies with the SR, in the presence and absence of the WRC, showed that intramolecular deactivation was more efficient in the former case, thus suggesting the predominance of an oxidative quenching pathway.
Charge transport in polymeric graphitic carbon nitrides is shown to proceed via diffusive hopping of electron and hole polarons with reasonably high mobilities >10(-5) cm(2) V(-1) s(-1). The power-law behavior of the ultrafast luminescence decay exhibits that the predominant transport direction is perpendicular to the graphitic polymer sheets, thus complementing 2D materials like graphene.
Photoinduced electron-transfer processes within a precatalyst for intramolecular hydrogen evolution [(tbbpy)(2)Ru(tpphz)PdCl(2)](2+) (RuPd; tbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine, tpphz = tetrapyrido[3,2-a:2',3'c:3'',2'',-h:2''',3'''-j]phenazine) have been studied by resonance Raman and ultrafast time-resolved absorption spectroscopy. By comparing the photophysics of the [(tbbpy)(2)Ru(tpphz)](2+) subunit Ru with that of the supramolecular catalyst RuPd, the individual electron-transfer steps are assigned to kinetic components, and their dependence on solvent is discussed. The resonance Raman data reveal that the initial excitation of the molecular ensemble is spread over the terminal tbbpy and the tpphz ligands. The subsequent excited-state relaxation of both Ru and RuPd on the picosecond timescale involves formation of the phenazine-centered intraligand charge-transfer state, which in RuPd precedes formation of the Pd-reduced state. The photoreaction in the heterodinuclear supramolecular complex is completed on a subnanosecond timescale. Taken together, the data indicate that mechanistic investigations must focus on potential rate-determining steps other than electron transfer between the photoactive center and the Pd unit. Furthermore, structural variations should be directed towards increasing the directionality of electron transfer and the stability of the charge-separated states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.