Simple SummaryThe objective of this study was to evaluate the effects of supplementation of dairy cows’ diets with different fatty acid (FA) sources on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. Supplementation (3% dry matter (DM)) of diets with soybean oil (SO) and fish oil (FO) did not have detrimental effects on milk production, milk composition, or ice cream physicochemical and sensory characteristics. From a human standpoint, SO and FO improved the FA profile of milk.AbstractThe objective of this study was to evaluate the effects of supplementation of dairy cows with different fatty acid sources (soybean oil (SO) and fish oil (FO)) on milk production, milk composition, milk fatty acid profile, and physicochemical and sensory characteristics of ice cream. During 63 days, fifteen Holstein cows averaging 198 ± 35 days in milk were assigned to three groups: control diet with no added lipid (n = 5 cows); and supplemented diets with SO (n = 5 cows; unrefined SO; 30 g/kg DM) or FO (n = 5 cows; FO from unrefined salmon oil; 30 g/kg DM). Milk production, milk fat, and milk protein were not affected by treatments. Saturated fatty acids in milk fat were decreased with SO and FO compared with control. C18:2 cis-9, cis-12 was increased with SO whereas C18:2 cis-9, trans-11, C20:3n-3, C20:3n-6, C20:5n-3, and C22:6n-3 were the highest with FO. Draw temperature and firmness were higher in SO compared to control and FO ice creams. Melting resistance was higher in FO compared with control and SO ice creams. Supplementation of cow diets with SO and FO did not have detrimental effects on milk production, or ice cream physicochemical and sensory characteristics.
This Technical Research Communication evaluated the influence of various cheese manufacture methods on the composition and in vitro antihypertensive activity of sweet whey samples obtained from miniature models for fresh, Chanco and Gouda-style cheese processing using bulk-tank milks throughout a year. Raw milks from morning milking were standardized, pasteurized and used to obtain sweet whey using cheesemaking protocols for each variety on 200 g scale, as well the use of whey dilution at levels of 0, 15, 30 and 45% in Chanco and Gouda-style making. The composition of sweet whey obtained within each cheesemaking variety was similar among different timepoints of the year (P > 0.05), which was attributed to similar composition of milks and the use standardized cheesemaking protocols used for this study. As expected, the use of whey dilution led to sweet whey samples with reduced levels of total solids (P < 0.05), but they exhibited an improvement of the in vitro antihypertensive properties, which may be attributed to the formation of low-molecular weight bioactive peptides due to increased cheese making times. The results of this study suggest that modifying cheese manufacture protocols may have a direct impact on the bioactive properties of sweet whey. Future work will be required to identify and evaluate the feasibility to purify bioactive peptides obtained from sweet whey.
The research reported in this Research Communication evaluates the effect of milk acidification on the physicochemical and sensory properties of Licor de Oro (or Gold Liqueur; LO), a traditional alcoholic beverage produced in Chiloé island, Chile, which is made by mixing milk acidified with lemon juice and alcohol at a ratio of 1.0:1.0, along with sugar and other spices. The mixture is stored for a couple of weeks and then filtered to obtain a product with a yellowish-transparent appearance, sweetness and acidic taste, milky and alcoholic notes. The lack of information regarding LO processing, mainly in the amount of acid added to the mixture, leads to products of highly variable quality. Thus, the objective of this study was to evaluate the effect of milk acidification on the physicochemical and sensory properties of LO. Raw milk was acidified using citric acid to six different pH values: 6.7 (control), 6.0, 5.3, 4.6, 3.9 and 3.2. These milk treatments were then used to make LO. A decrease of milk pH led to LO with higher levels of sensorial and titratable acidity. LO obtained at pH 6.7 and 6.0 had higher levels of total protein than other treatments, leading to excessive turbidity. In contrast, treatments made at pH ≤5.3 had a typical transparent appearance of LO. These results suggest that a minimum level of milk acidification is required to obtain LO with desired appearance and composition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.