Accurate MR-based attenuation correction (MRAC) is essential for quantitative PET/MR imaging of the brain. In this study, we analyze the regional bias caused by MRAC based on Zero-Echo-Time MR images (ZTEAC) compared to CT-based AC (CTAC) in static and dynamic PET imaging. In addition the results are compared to the performance of the current default Atlas-based AC (AtlasAC) implemented in the GE SIGNA PET/MR. Methods: Thirty static [ 18 F]FDG and eleven dynamic [ 18 F]PE2I acquisitions from a GE SIGNA PET/MR were reconstructed using ZTEAC (using a research tool, GE Healthcare), single-subject AtlasAC (the current default AC in GE's SIGNA PET/MR) and CTAC (from a PET/CT acquisition of the same day). In the 30 static [ 18 F]FDG reconstructions, the bias caused by ZTEAC and AtlasAC in the mean uptake of 85 anatomical volumes of interest (VOIs) of the Hammers' atlas was analyzed in PMOD. For the eleven dynamic [ 18 F]PE2I reconstructions, the bias caused by ZTEAC and AtlasAC in the non displaceable binding potential BP nd in the striatum was calculated with cerebellum as the reference region and a simplified reference tissue model. Results: The regional bias caused by ZTEAC in the static [ 18 F]FDG reconstructions ranged from -8.0% to +7.7% (mean 0.1%, SD 2.0%). For AtlasAC this bias ranged from -31.6% to +16.6% (mean -0.4%, SD 4.3%). The bias caused by AtlasAC showed a clear gradient in the cranio-caudal direction (-4.2% in the cerebellum, +6.6% in the left superior frontal gyrus). The bias in the striatal BP nd for the [ 18 F]PE2I reconstructions ranged from -0.8% to +4.8% (mean 1.5%, SD 1.4%) using ZTEAC and from -0.6% to +9.4% using AtlasAC (mean 4.2%, SD 2.6%). Conclusion: ZTEAC provides excellent quantitative accuracy for static and dynamic brain PET/MR, comparable to CTAC, and is clearly superior to the default AtlasAC currently implemented in the GE SIGNA PET/MR.
Time-of-flight (TOF) PET data provide an effective means for attenuation correction (AC) when no (or incomplete or inaccurate) attenuation information is available. Since MR scanners provide little information on photon attenuation of different tissue types, AC in hybrid PET/MR scanners has always been challenging. In this contribution, we aim at validating the activity reconstructions of the maximum-likelihood ordered-subsets activity and attenuation (OSAA) reconstruction algorithm on a patient brain data set. We present a quantitative comparison of joint reconstructions with the current clinical gold standard-ordered-subsets expectation maximizationusing CT-based AC in PET/CT, as well as the current state of the art in PET/MR, that is, zero time echo (ZTE)-based AC. Methods: The TOF PET emission data were initially used in a preprocessing stage to estimate crystal maps of efficiencies, timing offsets, and timing resolutions. Applying these additional corrections during reconstructions, OSAA, ZTE-based, and the vendor-provided atlas-based AC techniques were analyzed and compared with CT-based AC. In our initial study, we used the CT-based estimate of the expected scatter and later used the ZTE-based and OSAA attenuation estimates to compute the expected scatter contribution of the data during reconstructions. In all reconstructions, a maximum-likelihood scaling of the single-scatter simulation estimate to the emission data was used for scatter correction. The reconstruction results were analyzed in the 86 segmented regions of interest of the Hammers atlas. Results: Our quantitative analysis showed that, in practice, a tracer activity difference of 10.5% (±2.1%) and 10.1% (±2.3%) could be expected for the state-of-the-art ZTE-based and OSAA AC methods, respectively, in PET/MR compared with the clinical gold standard in PET/CT. Conclusion: Joint activity and attenuation estimation methods can provide an effective solution to the challenging AC problem for brain studies in hybrid TOF PET/MR scanners. With an accurate TOF-based (timing offsets and timing resolutions) calibration, and similar to the results of the state-of-the-art method in PET/MR, regional errors of joint TOF PET reconstructions are within a few percentage points.
Pancreatic islet transplantation can be a more permanent treatment for type 1 diabetes compared to daily insulin administration. Quantitative and longitudinal noninvasive imaging of viable transplanted islets might help to further improve this novel therapy. Since islets express dopamine 2 (D2) receptors, they could be visualized by targeting this receptor. Therefore, the D2 receptor antagonist based tracer [(125/123)I][IBZM] was selected to visualize transplanted islets in a rat model. BZM was radioiodinated, and the labeling was optimized for position 3 of the aromatic ring. [(125)I]-3-IBZM was characterized in vitro using INS-1 cells and isolated islets. Subsequently, 1,000 islets were transplanted in the calf muscle of WAG/Rij rats and SPECT/CT images were acquired 6 weeks after transplantation. Finally, the graft containing muscle was dissected and analyzed immunohistochemically. Oxidative radioiodination resulted in 3 IBZM isomers with different receptor affinities. The use of 0.6 mg/mL chloramine-T hydrate resulted in high yield formation of predominantly [(125)I]-3-IBZM, the isomer harboring the highest receptor affinity. The tracer showed D2 receptor mediated binding to isolated islets in vitro. The transplant could be visualized by SPECT 6 weeks after transplantation. The transplants could be localized in the calf muscle and showed insulin and glucagon expression, indicating targeting of viable and functional islets in the transplant. Radioiodination was optimized to produce high yields of [(125)I]-3-IBZM, the isomer showing optimal D2R binding. Furthermore, [(123)I]IBZM specifically targets the D2 receptors on transplanted islets. In conclusion, this tracer shows potential for noninvasive in vivo detection of islets grafted in the muscle by D2 receptor targeting.
This multicenter study confirms that the F-FDG ALS pattern is stable across centers. Furthermore, it highlights the importance of carefully selected controls, as subclinical frontal changes might be present in patients in an oncological setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.