A numerical scheme for solving high-dimensional stochastic control problems on an infinite time horizon that appear relevant in the context of molecular dynamics is outlined. The scheme rests on the interpretation of the corresponding Hamilton-Jacobi-Bellman equation as a nonlinear eigenvalue problem that, using a logarithmic transformation, can be recast as a linear eigenvalue problem, for which the principal eigenvalue and its eigenfunction are sought. The latter can be computed e ciently by approximating the underlying stochastic process with a coarse-grained Markov state model for the dominant metastable sets. We illustrate our method with two numerical examples, one of which involves the task of maximizing the population of ↵-helices in an ensemble of small biomolecules (Alanine dipeptide), and discuss the relation to the large deviation principle of Donsker and Varadhan.
The urea-urease clock reaction is a pH switch from acid to basic that can turn into a pH oscillator if it occurs inside a suitable open reactor. We study the confinement of the reaction to lipid vesicles, which permit the exchange with an external reservoir by differential transport, enabling the recovery of the pH level and yielding a constant supply of urea molecules. For microscopically small vesicles, the discreteness of the number of molecules requires a stochastic treatment of the reaction dynamics. Our analysis shows that intrinsic noise induces a significant statistical variation of the oscillation period, which increases as the vesicles become smaller. The mean period, however, is found to be remarkably robust for vesicle sizes down to approximately 200 nm. The observed oscillations are explained as a canard-like limit cycle that differs from the wide class of conventional feedback oscillators.
Well-mixed stochastic chemical kinetics are properly modeled by the chemical master equation (CME) and associated Markov jump processes in molecule number space. If the reactants are present in large amounts, however, corresponding simulations of the stochastic dynamics become computationally expensive and model reductions are demanded. The classical model reduction approach uniformly rescales the overall dynamics to obtain deterministic systems characterized by ordinary differential equations, the well-known mass action reaction rate equations. For systems with multiple scales, there exist hybrid approaches that keep parts of the system discrete while another part is approximated either using Langevin dynamics or deterministically. This paper aims at giving a coherent overview of the different hybrid approaches, focusing on their basic concepts and the relation between them. We derive a novel general description of such hybrid models that allows expressing various forms by one type of equation. We also check in how far the approaches apply to model extensions of the CME for dynamics which do not comply with the central well-mixed condition and require some spatial resolution. A simple but meaningful gene expression system with negative self-regulation is analysed to illustrate the different approximation qualities of some of the hybrid approaches discussed. Especially, we reveal the cause of error in the case of small volume approximations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.