TeaserWe proposed the design of nanomedicines that target cells phenotypically enabling binding only when a precise receptor(s) composition is present. AbstractTight control on the selectivity of nanoparticles' interaction with biological systems is paramount for the development of targeted therapies. However, the large number of synthetically tunable parameters makes it difficult to identify optimal design ``sweet spots'' without rational guiding principles. Here we address this problem combining super-selectivity theory (SST) with analytical models from soft matter and polymer physics into a unified theoretical framework. Starting from an archetypal polymersome functionalized with targeting ligands, we use our model to identify the most selective combination of parameters in terms of particle size, brush polymerization degree and grafting density, as well as tether length, binding affinity and ligands number. We further show how to combine multivalent interactions into multiplexed systems which act holistically as a function of the density of more than one receptor type, so as to achieve binding only when multiple receptors are expressed above a threshold density. We show that theory can be used to effectively fit experimental data and, hence confirming its suitability. We thus propose the design of "barcoding" targeting approach that can be tailor-made to unique cell populations enabling personalized therapies.
<div> <div> <p>Tight control on the selectivity of nanoparticles' interaction with biological systems is paramount for the development of targeted therapies. However, the large number of synthetically tunable parameters makes it difficult to identify optimal design ``sweet spots'' without rational guiding principles. Here we address this problem combining super-selectivity theory (SST) with analytical models from soft matter and polymer physics into a unified theoretical framework. Starting from an archetypal system, a polymersome functionalized with targeting ligands, we use our model to identify the most selective combination of parameters in terms of particle size, brush polymerization degree and grafting density, as well as tether length, binding affinity and ligands number. We further show how to combine multivalent interactions into multiplexed systems which act holistically as a function of the density of more than one receptor type, so as to achieve binding only when multiple receptors are expressed above a threshold density. We show that theory can be used to effectively fit experimental data and, hence confirming its suitability. We thus propose the design of “bar-coding" targeting approach that can be tailor-made to unique cell populations enabling personalized therapies. </p> </div> </div>
<div> <div> <p>Tight control on the selectivity of nanoparticles' interaction with biological systems is paramount for the development of targeted therapies. However, the large number of synthetically tunable parameters makes it difficult to identify optimal design ``sweet spots'' without rational guiding principles. Here we address this problem combining super-selectivity theory (SST) with analytical models from soft matter and polymer physics into a unified theoretical framework. Starting from an archetypal system, a polymersome functionalized with targeting ligands, we use our model to identify the most selective combination of parameters in terms of particle size, brush polymerization degree and grafting density, as well as tether length, binding affinity and ligands number. We further show how to combine multivalent interactions into multiplexed systems which act holistically as a function of the density of more than one receptor type, so as to achieve binding only when multiple receptors are expressed above a threshold density. We show that theory can be used to effectively fit experimental data and, hence confirming its suitability. We thus propose the design of “bar-coding" targeting approach that can be tailor-made to unique cell populations enabling personalized therapies. </p> </div> </div>
<div> <div> <div> <p>Tight control on the selectivity of nanoparticles’ interaction with biological systems is paramount for the development of targeted therapies. However, the large number of synthetically tuneable parameters makes it difficult to identify optimal design “sweet spots” without rational guiding principles. Here we address this problem combining super-selectivity theory (SST) with analytical models from soft matter and polymer physics into a unified theoretical framework. Starting from an archetypal system, a polymer-stabilized nanoparticle function- alised with targeting ligands, we use our model to identify the most selective combination of parameters in terms of particle size, brush polymerization degree and grafting density, as well as tether length, binding affinity and ligands number. </p> </div> </div> </div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.