Keywords:HIV-1 integrase LEDGF/p75 Protein-protein interactions Molecular docking GRID a b s t r a c tThe search of small molecules as protein-protein interaction inhibitors represents a new attractive strategy to develop anti-HIV-1 agents. We previously reported a computational study that led to the discovery of new inhibitors of the interaction between enzyme HIV-1 integrase (IN) and the nuclear protein lens epithelium growth factor LEDGF/p75. 1 Herein, we describe new findings about the binding site of LEDGF/p75 on IN employing a different computational approach. In this way further structural requirements, helpful to disrupt LEDGF/p75-IN binding, have been identified. The main result of this work was the exploration of a relevant hydrophobic region. So we planned the introduction of suitable and simple chemical modifications on our previously reported 'hit' and the new synthesized compounds were subjected to biological tests.The results obtained demonstrate that the hydrophobic pocket could play a key role in improving inhibitory efficacy thus opening new suggestions to design active ligands.
Following previous studies we herein report the exploration of the carbonic anhydrase (CA, EC 4.2.1.1) inhibitory effects and enzyme selectivity of a small class of 1-(cyclo)alkylisoquinolines containing a sulfonamide function considered a key feature for inhibiting CA. The results of enzymatic assays against human (h) CA isoforms, hCA I and hCA II (cytosolic, ubiquitous enzymes), hCA IX (transmembrane, tumor-associated), and hCA XIV (transmembrane), suggested that the presence of C-1 small substituents on isoquinoline scaffold controls both inhibitory potency and selectivity. Some derivatives showed potent hCA IX and hCA XIV inhibitory effects at nanomolar concentrations as well as low affinity for the ubiquitous hCA II. Moreover, we report the X-ray crystal structure of one of these derivatives in complex with dominant human isoform II, thus confirming the sulfonamide--zinc interactions. Finally, the results of docking experiments suggested the hypothetic interactions in the catalytic binding site for the most active and selective hCA IX and hCA XIV inhibitor.
Isoquinolinesulfonamides inhibit human carbonic anhydrases (hCAs) and display selectivity toward therapeutically relevant isozymes. The crystal structure of hCA II in complex with 6,7-dimethoxy-1-methyl-1,2,3,4-tetrahydroisoquinolin-2-ylsulfonamide revealed unusual inhibitor binding. Structural analyses allowed for discerning the fine details of the inhibitor binding mode to the active site, thus providing clues for the future design of even more selective inhibitors for druggable isoforms such as the cancer associated hCA IX and neuronal hCA VII.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.