Inferior Alveolar Nerve (IAN) canal detection has been the focus of multiple recent works in dentistry and maxillofacial imaging. Deep learning-based techniques have reached interesting results in this research field, although the small size of 3D maxillofacial datasets has strongly limited the performance of these algorithms. Researchers have been forced to build their own private datasets, thus precluding any opportunity for reproducing results and fairly comparing proposals. This work describes a novel, large, and publicly available mandibular Cone Beam Computed Tomography (CBCT) dataset, with 2D and 3D manual annotations, provided by expert clinicians. Leveraging this dataset and employing deep learning techniques, we are able to improve the state of the art on the 3D mandibular canal segmentation. The source code which allows to exactly reproduce all the reported experiments is released as an open-source project, along with this article.
Connected Components Labeling is an essential step of many Image Processing and Computer Vision tasks. Since the first proposal of a labeling algorithm, which dates back to the sixties, many approaches have optimized the computational load needed to label an image. In particular, the use of decision forests and state prediction have recently appeared as valuable strategies to improve performance. However, due to the overhead of the manual construction of prediction states and the size of the resulting machine code, the application of these strategies has been restricted to small masks, thus ignoring the benefit of using a block-based approach. In this paper, we combine a block-based mask with state prediction and code compression: the resulting algorithm is modeled as a Directed Rooted Acyclic Graph with multiple entry points, which is automatically generated without manual intervention. When tested on synthetic and real datasets, in comparison with optimized implementations of state-of-the-art algorithms, the proposed approach shows superior performance, surpassing the results obtained by all compared approaches in all settings.
Connected Components Labeling (CCL) is a crucial step of several image processing and computer vision pipelines. Many efficient sequential strategies exist, among which one of the most effective is the use of a block-based mask to drastically cut the number of memory accesses. In the last decade, aided by the fast development of Graphics Processing Units (GPUs), a lot of data parallel CCL algorithms have been proposed along with sequential ones. Applications that entirely run in GPU can benefit from parallel implementations of CCL that allow to avoid expensive memory transfers between host and device. In this paper, two new eight-connectivity CCL algorithms are proposed, namely Block-based Union Find (BUF) and Block-based Komura Equivalence (BKE). These algorithms optimize existing GPU solutions introducing a block-based approach. Extensions for three-dimensional datasets are also discussed. In order to produce a fair comparison with previously proposed alternatives, YACCLAB, a public CCL benchmarking framework, has been extended and made suitable for evaluating also GPU algorithms. Moreover, three-dimensional datasets have been added to its collection. Experimental results on real cases and synthetically generated datasets demonstrate the superiority of the new proposals with respect to state-of-the-art, both on 2D and 3D scenarios.
This paper presents a novel strategy to perform skin lesion segmentation from dermoscopic images. We design an effective segmentation pipeline, and explore several pre-training methods to initialize the features extractor, highlighting how different procedures lead the Convolutional Neural Network (CNN) to focus on different features. An encoder-decoder segmentation CNN is employed to take advantage of each pre-trained features extractor. Experimental results reveal how multiple initialization strategies can be exploited, by means of an ensemble method, to obtain state-of-the-art skin lesion segmentation accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.