One moderate- to large-magnitude earthquake (M > 6) nucleates in Earth's crust every three days n average, but the geological record of ancient fault slip at meters-per-second seismic velocities (as opposed to subseismic slow-slip creep) remains debated because of the lack of established fault-zone evidence of seismic slip. Here we show that the irreversible temperature-dependent transformation of carbonaceous material (CM, a constituent of many fault gouges) into graphite is a reliable tracer of seismic fault slip. We sheared CM-bearing fault rocks in the laboratory at just above subseismic and at seismic velocities under both water-rich and water-deficient conditions and modeled the temperature evolution with slip. By means of micro-Raman spectroscopy and focused-ion beam transmission electron microscopy, we detected graphite grains similar to those found in the principal slip zone of the A.D. 2008 Wenchuan (Mw 7.9) earthquake (southeast Tibet) only in experiments conducted at seismic velocities. The experimental evidence presented here suggests that high-temperature pulses associated with seismic slip induce graphitization of CM. Importantly, the occurrence of graphitized fault-zone CM may allow us to ascertain the seismogenic potential of faults in areas worldwide with incomplete historical earthquake catalogues
Nanoparticles and amorphous materials are common constituents of the shallow sections of active faults. Understanding the conditions at which nanoparticles are produced and their effects on friction can further improve our understanding of fault mechanics and earthquake energy budgets. Here we present the results of 59 rotary shear experiments conducted at room humidity conditions on gouge consisting of mixtures of smectite (Ca-montmorillonite) and quartz. Experiments with 60, 50, 25, 0 wt.% Ca-montmorillonite, were performed to investigate the influence of variable clay content on nanoparticle production and their influence on frictional processes. All experiments were performed at a normal stress of 5 MPa, slip rate of 0.0003≤V≤1.5 ms−1, and at a displacement of 3 m. To monitor the development of fabric and the mineralogical changes during the experiments, we investigated the deformed gouges using scanning and transmission electron microscopy combined with X-ray powder diffraction quantitative phase analysis. This integrated analytical approach reveals that, at all slip rates and compositions, the nanoparticles (grain size of 10–50 nm) are partly amorphous and result from cataclasis, wear and mechanical solid-state amorphization of smectite. The maximum production of amorphous nanoparticle occurs in the intermediate slip rate range (0.0003≤V≤0.1 ms−1), at the highest frictional work, and is associated to diffuse deformation and slip strengthening behavior. Instead, the lowest production of amorphous nanoparticles occurs at co-seismic slip rates (V≥1.3 ms−1), at the highest frictional power and is associated with strain and heat localization and slip weakening behavior. Our findings suggest that, independently of the amount of smectite nanoparticles, they produce fault weakening only when typical co-seismic slip rates (>0.1 ms−1) are achieved. This implies that estimates of the fracture surface energy dissipated during earthquakes in natural faults might be extremely difficult to constrai
During earthquake propagation, geologic faults lose their strength, then strengthen as slip slows and stops. Many slip-weakening mechanisms are active in the upper-mid crust, but healing is not always well-explained. Here we show that the distinct structure and rate-dependent properties of amorphous nanopowder (not silica gel) formed by grinding of quartz can cause extreme strength loss at high slip rates. We propose a weakening and related strengthening mechanism that may act throughout the quartz-bearing continental crust. The action of two slip rate-dependent mechanisms offers a plausible explanation for the observed weakening: thermally-enhanced plasticity, and particulate flow aided by hydrodynamic lubrication. Rapid cooling of the particles causes rapid strengthening, and inter-particle bonds form at longer timescales. The timescales of these two processes correspond to the timescales of post-seismic healing observed in earthquakes. In natural faults, this nanopowder crystallizes to quartz over 10s–100s years, leaving veins which may be indistinguishable from common quartz veins.
In subduction zones, seismic slip at shallow crustal depths can lead to the generation of tsunamis. Large slip displacements during tsunamogenic earthquakes are attributed to the low coseismic shear strength of the fluid-saturated and non-lithified clay-rich fault rocks. However, because of experimental challenges in confining these materials, the physical processes responsible for the coseismic reduction in fault shear strength are poorly understood. Using a novel experimental setup, we measured pore fluid pressure during simulated seismic slip in clay-rich materials sampled from the deep oceanic drilling of the Pāpaku thrust (Hikurangi subduction zone, New Zealand). Here, we show that at seismic velocity, shear-induced dilatancy is followed by pressurisation of fluids. The thermal and mechanical pressurisation of fluids, enhanced by the low permeability of the fault, reduces the energy required to propagate earthquake rupture. We suggest that fluid-saturated clay-rich sediments, occurring at shallow depth in subduction zones, can promote earthquake rupture propagation and slip because of their low permeability and tendency to pressurise when sheared at seismic slip velocities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.