We consider limits of $$ \mathcal{N} $$
N
= 4 super Yang-Mills (SYM) theory that approach BPS bounds and for which an SU(1,1) structure is preserved. The resulting near-BPS theories become non-relativistic, with a U(1) symmetry emerging in the limit that implies the conservation of particle number. They are obtained by reducing $$ \mathcal{N} $$
N
= 4 SYM on a three-sphere and subsequently integrating out fields that become non-dynamical as the bounds are approached. Upon quantization, and taking into account normal-ordering, they are consistent with taking the appropriate limits of the dilatation operator directly, thereby corresponding to Spin Matrix theories, found previously in the literature. In the particular case of the SU(1,1—1) near-BPS/Spin Matrix theory, we find a superfield formulation that applies to the full interacting theory. Moreover, for all the theories we find tantalizingly simple semi-local formulations as theories living on a circle. Finally, we find positive-definite expressions for the interactions in the classical limit for all the theories, which can be used to explore their strong coupling limits. This paper will have a companion paper in which we explore BPS bounds for which a SU(2,1) structure is preserved.
We analytically compute subsystem action complexity for a segment in the BTZ black hole background up to the finite term, and we find that it is equal to the sum of a linearly divergent term proportional to the size of the subregion and of a term proportional to the entanglement entropy. This elegant structure does not survive to more complicated geometries: in the case of a two segments subregion in AdS 3 , complexity has additional finite contributions. We give analytic results for the mutual action complexity of a two segments subregion.
We consider limits of $$ \mathcal{N} $$
N
= 4 super-Yang-Mills (SYM) theory that approach BPS bounds. These limits result in non-relativistic near-BPS theories that describe the effective dynamics near the BPS bounds and upon quantization are known as Spin Matrix theories. The near-BPS theories can be obtained by reducing $$ \mathcal{N} $$
N
= 4 SYM on a three-sphere and integrating out the fields that become non-dynamical in the limits. We perform the sphere reduction for the near-BPS limit with SU(1, 2|2) symmetry, which has several new features compared to the previously considered cases with SU(1) symmetry, including a dynamical gauge field. We discover a new structure in the classical limit of the interaction term. We show that the interaction term is built from certain blocks that comprise an irreducible representation of the SU(1, 2|2) algebra. Moreover, the full interaction term can be interpreted as a norm in the linear space of this representation, explaining its features including the positive definiteness. This means one can think of the interaction term as a distance squared from saturating the BPS bound. The SU(1, 1|1) near-BPS theory, and its subcases, is seen to inherit these features. These observations point to a way to solve the strong coupling dynamics of these near-BPS theories.
We classify the trace anomaly for parity-invariant non-relativistic Schrödinger theories in 2 + 1 dimensions coupled to background Newton-Cartan gravity. The general anomaly structure looks very different from the one in the z = 2 Lifshitz theories. The type A content of the anomaly is remarkably identical to that of the relativistic 3 + 1 dimensional case, suggesting the conjecture that an a-theorem should exist also in the Newton-Cartan context.
The Complexity=Action conjecture is studied for black holes in Warped AdS 3 space, realized as solutions of Einstein gravity plus matter. The time dependence of the action of the Wheeler-DeWitt patch is investigated, both for the non-rotating and the rotating case. The asymptotic growth rate is found to be equal to the Hawking temperature times the Bekenstein-Hawking entropy; this is in agreement with a previous calculation done using the Complexity=Volume conjecture. arXiv:1806.06216v1 [hep-th]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.