Muscle represents an important tissue target for adeno-associated viral (AAV) vector-mediated gene transfer of the factor IX (FIX) gene in hemophilia B (HB) subjects with advanced liver disease. Previous studies of direct intramuscular administration of an AAV-FIX vector in humans showed limited efficacy. Here we adapted an intravascular delivery system of AAV vectors encoding the FIX transgene to skeletal muscle of HB dogs. The procedure, performed under transient immunosuppression (IS), resulted in widespread transduction of muscle and sustained, dose-dependent therapeutic levels of canine FIX transgene up to 10-fold higher than those obtained by intramuscular delivery. Correction of bleeding time correlated clinically with a dramatic reduction of spontaneous bleeding episodes. None of the dogs (n = 14) receiving the AAV vector under transient IS developed inhibitory antibodies to canine FIX; transient inhibitor was detected after vector delivery without IS. The use of AAV serotypes with high tropism for muscle and low susceptibility to anti-AAV2 antibodies allowed for efficient vector administration in naive dogs and in the presence of low- but not high-titer anti-AAV2 antibodies. Collectively, these results demonstrate the feasibility of this approach for treatment of HB and highlight the importance of IS to prevent immune responses to the FIX transgene product.
The estimated frequency of MSCs in BM is about 0.001-0.01% of total nucleated cells. Most commonly, one applied therapeutic cell dose is about 1-5 million MSCs/kg body weight, necessitating a reliable, fast, and safe expansion system. The limited availability of MSCs demands for an extensive ex vivo amplification step to accumulate sufficient cell numbers. Human platelet lysate (PL) has proven to be a safe and feasible alternative to animal-derived serum as supplement for MSC cultivation. We have investigated the functionally closed automated cell culture hollow fiber bioreactor Quantum cell expansion system as an alternative novel tool to conventional tissue flasks for efficient clinical-scale MSC isolation and expansion from bone marrow using PL. Cells expanded in the Quantum system fulfilled MSC criteria as shown by flow cytometry and adipogenic, chondrogenic, and osteogenic differentiation capacity. Cell surface expression of a variety of chemokine receptors, adhesion molecules, and additional MSC markers was monitored for several passages by flow cytometry. The levels of critical media components like glucose and lactate were analyzed. PDGF-AA, PDGF-AB/ BB, bFGF, TGF-b1, sICAM-1, sVCAM-1, RANTES, GRO, VEGF, sCD40L, and IL-6 were assessed using a LUMINEX platform. Originally optimized for the use of fetal calf serum (FCS) as supplement and fibronectin as coating reagent, we succeeded to obtain an average of more than 100 ´ 10 6 of MSCs from as little as 18.8-28.6 ml of BM aspirate using PL. We obtained similar yields of MSCs/µl BM in the FCS-containing and the xenogen-free expansion system. The Quantum system reliably produces a cellular therapeutic dose in a functionally closed system that requires minimal manipulation. Both isolation and expansion are possible using FCS or PL as supplement. Coating of the hollow fibers of the bioreactor is mandatory when loading MSCs. Fibronectin, PL, and human plasma may serve as coating reagents.
The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.
This chapter describes a method for GMP-compliant expansion of human mesenchymal stromal/stem cells (hMSC) from bone marrow aspirates, using the Quantum(®) Cell Expansion System from Terumo BCT. The Quantum system is a functionally closed, automated hollow fiber bioreactor system designed to reproducibly grow cells in either GMP or research laboratory environments. The chapter includes protocols for preparation of media, setup of the Quantum system, coating of the hollow fiber bioreactor, as well as loading, feeding, and harvesting of cells. We suggest a panel of quality controls for the starting material, the interim product, as well as the final product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.