This paper presents an efficient analytical solution strategy to determine the adhesive stresses in balanced and unbalanced adhesively bonded joints with mixed force loading and/or displacement boundary conditions. The adhesive stresses are expressed in terms of geometrical dimensions and material properties, combined with integration constants obtained numerically. The model is successfully applied for the analysis of various types of joints, including balanced and unbalanced stiffened plate/joint, single-strap joint, and single-lap joint. In all such cases, the linear equation sets are supplied to determine the integration constants in the final stress expressions. The analytical predictions agree well with the finite element results for adhesive stresses. This proposed model can be extended conveniently to predict the mechanical behavior of similar bonded structures such as composite laminates, electronics packaging, and flexible electronics structures
The paper presents a mechanical model of the mixed-mode bending (MMB) test used to assess the mixed-mode interlaminar fracture toughness of composite laminates. The laminated specimen is considered as an assemblage of two sublaminates partly connected by an elasticbrittle interface. The problem is formulated through a set of 36 differential equations, accompanied by suitable boundary conditions. Solution of the problem is achieved by separately considering the two subproblems related to the symmetric and antisymmetric parts of the loads, which for symmetric specimens correspond to fracture modes I and II, respectively. Explicit expressions are determined for the interfacial stresses, internal forces, and displacements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.