19 F magnetic resonance imaging (MRI) is a powerful noninvasive imaging technique with demonstrated potential for the detection of important diseases. The major challenge in the design of 19 F MRI agents is signal attenuation caused by the reduced solubility and segmental mobility of probes with high numbers of fluorine atoms. Careful choice of the fluorinated moiety is required to maintain image quality at the fluorine contents required for high imaging sensitivity. Here we report the synthesis of perfluoropolyether (PFPE) end-functionalized homopolymers of oligo(ethylene glycol) methyl ether acrylate (poly(OEGA) m -PFPE) as highly sensitive 19 F MRI contrast agents (CAs). The structural characteristics, conformation and aggregation behavior, 19 F NMR relaxation properties, and 19 F MR imaging were studied in detail. Dynamic light scattering and molecular dynamics (MD) simulations were conducted and demonstrated that poly(OEGA) m -PFPE with the longest poly(OEGA) m segments (m = 20) undergoes single-chain folding in water while poly(OEGA) 10 -PFPE and poly(OEGA) 4 -PFPE with shorter OEGA segments experience multiple-chain aggregation. Long 19 F T 2 relaxation times were measured for all poly(OEGA) m -PFPE polymers in PBS and in the presence of serum (>80 ms), and no obvious decrease in 19 F T 2 was observed with increasing fluorine content up to ∼30 wt %. Moreover, the signal-to-noise ratio increased linearly with increasing concentration of fluorine, indicating that the PFPE-based polymers can be applied as quantitative tracers. Furthermore, we investigated the in vivo behavior, in particular their biodistribution, of the polymers with different aggregation properties. Control over the balance of hydrophobicity and hydrophilicity allows manipulation of the aggregation state, and this leads to different circulation behavior in a murine model. This first report of the synthesis of polymeric PFPE-based 19 F MRI CAs demonstrates that these polymers are an exciting new class of 19 F MRI CAs with extremely high fluorine content and outstanding imaging sensitivity.
High-resolution NMR measurements and molecular dynamics (MD) simulations have been applied to the study of thermo-responsive copolymers of poly(ethylene glycol) methyl ether methacrylate (OEGMA) and 2,2,2-trifluoroethyl acrylate (TFEA) (poly(OEGMA-co-TFEA)) synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization.The detailed chemical microstructure of poly(OEGMA-co-TFEA) was investigated by means of various high-resolution NMR techniques. The polymer in aqueous solution possesses a lower critical solution temperature (LCST) at which significant changes in conformation are apparent.1 H 2D NOESY spectra were collected at temperatures below and above the LCST and demonstrated closer association of the exterior segments of the OEGMA side chains with the TFEA units above the LCST. MD simulations provided additional information on the changes in conformation and were consistent with the experimental findings. The combination of MD simulations with a detailed experimental study of poly(OEGMA-co-TFEA) in water leads to a clearer understanding of conformation occurring at the phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.