Brain-inspired computation can revolutionize information technology by introducing machines capable of recognizing patterns (images, speech, video) and interacting with the external world in a cognitive, humanlike way. Achieving this goal requires first to gain a detailed understanding of the brain operation, and second to identify a scalable microelectronic technology capable of reproducing some of the inherent functions of the human brain, such as the high synaptic connectivity (~104) and the peculiar time-dependent synaptic plasticity. Here we demonstrate unsupervised learning and tracking in a spiking neural network with memristive synapses, where synaptic weights are updated via brain-inspired spike timing dependent plasticity (STDP). The synaptic conductance is updated by the local time-dependent superposition of pre- and post-synaptic spikes within a hybrid one-transistor/one-resistor (1T1R) memristive synapse. Only 2 synaptic states, namely the low resistance state (LRS) and the high resistance state (HRS), are sufficient to learn and recognize patterns. Unsupervised learning of a static pattern and tracking of a dynamic pattern of up to 4 × 4 pixels are demonstrated, paving the way for intelligent hardware technology with up-scaled memristive neural networks.
Continual learning is the ability to acquire a new task or knowledge without losing any previously collected information. Achieving continual learning in artificial intelligence (AI) is currently prevented by catastrophic forgetting, where training of a new task deletes all previously learned tasks. Here, we present a new concept of a neural network capable of combining supervised convolutional learning with bio-inspired unsupervised learning. Brain-inspired concepts such as spike-timing-dependent plasticity (STDP) and neural redundancy are shown to enable continual learning and prevent catastrophic forgetting without compromising standard accuracy achievable with state-of-the-art neural networks. Unsupervised learning by STDP is demonstrated by hardware experiments with a one-layer perceptron adopting phasechange memory (PCM) synapses. Finally, we demonstrate full testing classification of Modified National Institute of Standards and Technology (MNIST) database with an accuracy of 98% and continual learning of up to 30% non-trained classes with 83% average accuracy. INDEX TERMS Catastrophic forgetting, continual learning, convolutional neural network (CNN), neuromorphic engineering, phase-change memory (PCM), spike-timing-dependent plasticity (STDP), supervised learning, unsupervised learning.
Hardware processors for neuromorphic computing are gaining significant interest as they offer the possibility of real in-memory computing, thus bypassing the limitations of speed and energy consumption of the von Neumann architecture. One of the major limitations of current neuromorphic technology is the lack of bio-realistic and scalable devices to improve the current design of artificial synapses and neurons. To overcome these limitations, the emerging technology of resistive switching memory has attracted wide interest as a nanoscaled synaptic element. This paper describes the implementation of a perceptron-like neuromorphic hardware capable of spiketiming dependent plasticity (STDP), and its operation under stochastic learning conditions. The learning algorithm of a single or multiple patterns, consisting of either static or dynamic visual input data, is described. The impact of noise is studied with respect to learning efficiency (false fire, true fire) and learning time. Finally, the impact of stochastic learning rule, such as the inversion of the time dependence of potentiation and depression in STDP, is considered. Overall, the work provides a proof of concept for unsupervised learning by STDP in memristive networks, providing insight into the dynamics of stochastic learning and supporting the understanding and design of neuromorphic networks with emerging memory devices.
Resistive switching memory (RRAM) devices have been proposed to boost the density and the biorealistic plasticity in neural networks. One of the main limitations to the development of neuromorphic systems with RRAM devices is the lack of compact models for the simulation of spiking neural networks, including neuron spike processing, synaptic plasticity, and stochastic learning. Here, we present a predictive model for neuromorphic networks with unsupervised spike timing-dependent plasticity (STDP) in HfO 2 RRAM devices. Our compact model can predict the learning behavior of experimental networks and can speed up the simulation of unsupervised learning compared to Monte Carlo (MC) approaches. The model can be used to optimize the classification accuracy of data sets, such as MNIST, and to estimate the time of learning and the energy consumption.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.