The European goal to reach carbon neutrality in 2050 has further put the focus on the construction sector, which is responsible for great impacts on the environment, and new sustainable solutions to renovate the existing building stock are currently under development. In this paper, the AdESA (Adeguamento Energetico Sismico ed Architettonico, in Italian) system, a holistic retrofit technique for the integrated renovation of the existing buildings, is presented. The system was developed by a consortium of enterprises and universities and was applied to a pilot building. The system consists of a dry, modular and flexible shell exoskeleton technique that implements different layers depending on the building retrofit needs (cross-laminated timber (CLT) panels for the structural retrofit, thermal insulation panels for the energy efficiency amelioration, and claddings for the architectural restyling). In order to foster actual sustainability, the solution contextually targets eco-efficiency, safety and resilience. To this end, the system not only couples the structural and energy interventions to reduce the operating costs, but it is also conceived in compliance with life cycle thinking (LCT) principles to reduce impacts throughout the remaining building service life (from retrofit time to the end of its life). The system is designed to be easily mountable and demountable to allow for the reuse/recycling of its components at the end of life by adopting macro-prefabricated dry components and standardized connections, to reduce damage caused by earthquakes by reducing the allowed inter-story drift, and by amassing the possible damage into sacrificial replaceable elements. The paper describes the AdESA system from a multidisciplinary perspective and its effective application for the deep renovation of an existing gymnasium hall.
A CFD model to simulate the cooling technique trough slot jet impingement has been developed. Such a technique has been tested on an existing vertical galvanizing industrial line, which initially envisaged a round jet configuration, the subject of a previous work. Two different slot jet configurations have been simulated and compared to the pre-existing one, in order to provide design information for a possible new jet cooler after exploring different solutions. The numerical model has been appropriately calibrated and validated by comparing it with experimental measurements from a literature case. At first, a single slot jet configuration was simulated through a 2D model, then multi slot configurations were calculated using 3D models. Different turbulence models were compared to select the best candidate for the CFD approach. Finally, several configurations with different slots numbers and jet-wall distances were considered. It was possible to understand the physical mechanisms underlying this cooling technique and to be able to select the most promising configuration for the reference industrial cooling process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.