SUMMARYThe egg parasitoid Trissolcus basalis (Wollaston) (Hymenoptera:Scelionidae) responded to synomones emitted by leguminous plants induced by feeding and oviposition activity of the bug Nezara viridula (L.)(Heteroptera: Pentatomidae). This was shown by laboratory bioassays using a Y-tube olfactometer. Broad bean leaves (Vicia faba L.) damaged by feeding activity of N. viridula and on which host egg mass had been laid produced synomones that attracted T. basalis. By contrast,undamaged leaves or feeding-damaged leaves without eggs did not attract wasp females. French bean plants (Phaseolus vulgaris L.) also emitted attractive synomones when they were damaged by host feeding and carrying egg masses. Thus, release of feeding- and oviposition-induced synomones does not seem to be plant-specific. Synomone production was shown to be a systemically induced plant physiological response to feeding damage and oviposition. Also,parts of the plant that were left undamaged and did not carry host eggs emitted attractive synomones when other parts of the plant were damaged by feeding and carrying eggs. Furthermore, wasps were not attracted by N. viridula egg masses offered alone or combined with damaged broad bean leaves. Thus, the attractiveness of feeding-damaged leaves carrying eggs is due to induction by feeding and oviposition rather than due to a combined effect of attractive volatiles released from eggs and damaged leaves. The production of synomones was influenced by the age of the host egg mass,because feeding-damaged leaves bearing egg masses attracted the parasitoid until the eggs were ∼72-96 h old but not once the larvae had hatched from the eggs (∼120 h old). These results show that annual plants are able to produce synomones as a consequence of feeding and egg mass oviposition by a sucking insect.
Bean plants (Vicia faba L. and Phaseolus vulgaris L.) damaged by feeding activity of Nezara viridula (L.) (Heteroptera: Pentatomidae), and onto which an egg mass had been laid, produced volatiles that attracted the egg parasitoid Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae). Extracts of volatiles of broad bean and French bean plants induced by adults of N. viridula as a result of their feeding activity, oviposition activity, and feeding and oviposition activity combined were analyzed by gas chromatography-mass spectrometry (GC-MS), and tested in Y-tube olfactometer bioassays as attractants for T. basalis females. In extracts from undamaged leguminous plants, green-leaf volatiles were absent or scarcely detected, and monoterpenes and sesquiterpenes were present at trace levels. No significant differences were detected in the profiles of volatiles of undamaged plants, and undamaged plants on which bugs were allowed only to lay eggs. In contrast, feeding and oviposition by adults of N. viridula induced in both leguminous plants a significant increase in terpenoids such as linalool, (E)-beta-caryophyllene, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (3E)-4,8-dimethyl-1,3,7-nonatriene, which was induced only in French bean plants. Quantitative comparisons revealed increased levels of (E)-beta-caryophyllene in extracts from feeding-damaged plants with N. viridula egg masses compared to feeding-damaged plants without egg masses. In Y-tube olfactometer bioassays, T. basalis females were attracted by extracts of both leguminous plants only when N. viridula adults were allowed to feed and oviposit upon them. Fractionation of extracts of volatiles from broad bean plants with N. viridula feeding damage and egg masses yielded two fractions. but only the fraction containing (E)-beta-caryophyllene was attractive to the egg parasitoid. These findings indicate that N. viridula feeding and oviposition induce leguminous plants to produce blends of volatiles that are characterized by increased amounts of (E)-beta-caryophyllene, and these blends attract female T. basalis. The role of (E)-beta-caryophyllene as a potential synomone for T. basalis is discussed.
The eggs of the southern green stink bug, Nezara viridula (L.) (Hemiptera: Pentatomidae), are successfully attacked by Trissolcus basalis (Woll.) (Hymenoptera: Scelionidae) and are recognized as hosts by a secretion applied to the egg chorion. This secretion is produced by the follicular cells in the proximal region of the ovanole of the female pentatomid and functions as an adhesive for attaching the eggs to the oviposition substrate. The adhesive and kairomone activity could be partially removed with water. This water extract elicited host recognition behaviour in T. basalis when applied to glass beads which stuck together as the extract dried. The adhesive and kairomonal activity was removed completely with acetone since acetone-washed host eggs were not recognized by T. basalis. Application of the acetone extract to glass beads stimulated ovipositional probes by T. basalis. The adhesive appeared to be composed of a mucopolysaccharide-protein complex.
Contact kairomones from adult southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae) that elicit foraging behavior of the egg parasitoid Trissolcus basalis (Wollaston) were investigated in laboratory experiments. Chemical residues from tarsi and scutella of N. viridula induced foraging by gravid female T. basalis. Residues from body parts of female N. viridula elicited stronger responses than those from the corresponding body parts of males. Deproteinized tarsi still elicited searching responses from wasps, indicating that the kairomone was not proteinaceous. Hexane extracts of host cuticular lipids induced searching responses from T. basalis, with a strong preference for extracts from female hosts. Extracts consisted primarily of linear alkanes from nC19 to nC34, with quantitative and qualitative differences between the sexes. Extracts of female N. viridula contained more nC23, nC24, and nC25 than the corresponding extracts from males, whereas nC19 was detected only in extracts from males. Direct-contact solid phase microextraction (DC-SPME) of N. viridula cuticle and of residues left by adult bugs walking on a glass plate confirmed gender-specific differences in nC19. Trissolcus basalis females responded weakly to a reconstructed blend of the straight-chain hydrocarbons, suggesting that minor components other than linear alkanes must be part of the kairomone. Addition of nC19 to hexane extracts of female N. viridula significantly reduced the wasps' arrestment responses, similar to wasps' responses to hexane extracts of male hosts. Overall, our results suggest that a contact kairomone that elicits foraging by T. basalis females is present in the cuticular lipids of N. viridula, and that the presence or absence of nC19 allows T. basalis females to distinguish between residues left by male or female hosts. The ecological significance of these results in the host location behavior of scelionid egg parasitoids is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.