In this study, two polymeric materials were tested in a dry rotating “pin-on-disc” configuration against differently coated surfaces, to evaluate their tribological response under conditions, such as those of rotary lip seals, and to identify the wear mechanism of each coupling. A PTFE based material, reinforced with glass fibers and a solid lubricant, and unreinforced polyketone were tested against a chromium oxide coating deposited by plasma thermal spraying, a CrN/NbN superlattice coating deposited by Physical Vapor Deposition (PVD), and a Diamond-Like Carbon (DLC) coating obtained through a hybrid PVD/PECVD (Plasma-Enhanced Chemical Vapor Deposition) process. The PTFE matrix composite offers better overall performance, in terms of specific wear rates and friction coefficients than polyketone. Although the tribological behavior of this material is generally worse than that of the PTFE matrix composite, it can be used without reinforcing fillers. Our analysis demonstrates the importance of transfer-film formation on the counter-surfaces, which can prevent further wear of the polymer if it adheres well to the counterpart. However, the tribofilm has opposing effects on the friction coefficient for the two materials: its formation leads to lower friction for PTFE and higher friction for polyketone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.