Samples used in most surveys are either not large enough to guarantee reliable direct estimates for all relevant sub-populations, or do not cover all possible disaggregation domains. After having described a holistic strategy for producing disaggregated estimates of Sustainable Development Goal (SDG) indicators, this paper discusses alternative sampling and estimation methods that can be applied when sample surveys are the primary data source. In particular, the paper focuses on strategies that can be implemented at different stages of the statistical production process. At the design stage, the paper describes a series of sampling approaches that ensure a “sufficient” sampling size for each disaggregation domain. In this context, the article highlights the main limitations of traditional sampling approaches and shows how ad-hoc techniques could overcome some of their key constraints. At the analysis stage, it discusses an indirect model-assisted estimation approach to integrate data from independent surveys and censuses, eliminating costs deriving from redesigning data collection instruments, and ensuring a greater accuracy of the final disaggregated estimates. A case study applying the abovementioned method on the production of disaggregated estimates of SDG Indicator 2.1.2 (Prevalence of Moderate and Severe Food Insecurity) is then presented along with its main results.
With the adoption of the 2030 Agenda for Sustainable Development, the production of high quality disaggregated estimates of Sustainable Development Goal (SDG) indicators has taken greater significance. In this context, sample surveys are characterized by samples that are either not large enough to guarantee reliable direct estimates for all relevant sub-populations, or that do not cover all possible disaggregation domains. To address these issues, indirect estimation approaches such as small area estimation (SAE) techniques can be adopted. The literature on the use of SAE in official statistics is broad and in continuous progress, yet the number of case studies on SAE methods applied to SDG indicators can still be expanded. After a brief review of the main SAE approaches available along with their principal fields of application, the present paper aims contributing to fill this gap by presenting a case study on SAE to produce disaggregated estimates of SDG Indicator 2.3.1, measuring average labour productivity of small-scale food producers. The discussed empirical exercise is based on a Fay-Herriot area-level SAE model, integrating survey data with area-level auxiliary information retrieved from multiple trustworthy geospatial information systems. Area-level SAE models have the advantage of being easy to implement and do not require accessing survey microdata and unit-level auxiliary information. These characteristics, jointly with the great potentials offered by modern geospatial information systems, offer the possibility of producing good quality disaggregated estimates of SDG indicators at high frequency and granular disaggregation level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.