SUMMARYThe objective of this paper is to examine the long-run determinants of internal migrations from southern Italy. In order to accomplish this task, the paper develops a bootstrap test for panel cointegration analysis with dependent units. Monte Carlo simulations show that the test, based on the Continuous-Path Block bootstrap, has good power and size properties and is robust to both short-and long-run dependence across units. The empirical analysis points to income in the sending region as a key factor of the decline of migrations, with unemployment and income differentials playing only a minor role.
In this paper we compare Bartlett-corrected, bootstrap, and fast double bootstrap tests on maximum likelihood estimates of cointegration parameters. The key result is that both the bootstrap and the Bartlett-corrected tests must be based on the unrestricted estimates of the cointegrating vectors: procedures based on the restricted estimates have almost no power. The small sample size bias of the asymptotic test appears so severe as to advise strongly against its use with the sample sizes commonly available; the fast double bootstrap test minimizes size bias, while the Bartlett-corrected test is somehow more powerful.Bartlett correction, Bootstrap, Cointegration, Fast double bootstrap,
Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte.
Terms of use:
Documents in EconStor may
Abstract:Stability tests for cointegrating coefficients are known to have very low power with small to medium sample sizes. In this paper we propose to solve this problem by extending the tests to dependent cointegrated panels through the stationary bootstrap. Simulation evidence shows that the proposed panel tests improve considerably on asymptotic tests applied to individual series. As an empirical illustration we examined investment and saving for a panel of 14 European countries over the 1960-2002 period. While the individual stability tests, contrary to expectations and graphical evidence, in almost all cases do not reject the null of stability, the bootstrap panel tests lead to the more plausible conclusion that the long-run relationship between these two variables is likely to have undergone a break.
JEL: C23, C15
Hypothesis testing on cointegrating vectors based on the asymptotic distributions of the test statistics are known to suffer from severe small sample size distortion. In this paper an alternative bootstrap procedure is proposed and evaluated through a Monte Carlo experiment, finding that the Type I errors are close to the nominal signficance levels but power might be not entirely adequate. It is then shown that a combined test based on the outcomes of both the asymptotic and the bootstrap tests will have both correct size and low Type II error, therefore improving the currently available procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.