The evolution from first-generation through third-generation glucose sensors has witnessed the appearance of a number of very diverse oxidoreductases, which vary tremendously in terms of origin, structure, substrate specificity, cofactor used as primary electron acceptor, and acceptable final electron acceptor. This article summarizes our present knowledge of redox enzymes currently utilized in commercially available glucose monitoring systems to promote a fuller appreciation of enzymatic properties and principles employed in blood glucose monitoring to help avoid potential errors.
No abstract
Systematic evolution of ligands by exponential enrichment (SELEX) is an efficient method to identify aptamers; however, it sometimes fails to identify aptamers that bind to their target with high affinity. Thus, post-SELEX optimization of aptamers is required to improve aptamer binding affinity. We developed in silico maturation based on a genetic algorithm (1) as an efficient mutagenesis method to improve aptamer binding affinity. In silico maturation was performed to improve a VEGF-binding DNA aptamer (VEap121). The VEap121 aptamer is considered to fold into a G-quadruplex structure and this structure may be important for VEGF recognition. Using in silico maturation, VEap121 was mutated with the exception of the guanine tracts that are considered to form the G-quartet. As a result, four aptamers were obtained that showed higher affinity compared with VEap121. The dissociation constant (K(d)) of the most improved aptamer (3R02) was 300 pM. The affinity of 3R02 was 16-fold higher than that of VEap121. Moreover, a bivalent aptamer was constructed by connecting two identical 3R02s through a 10-mer thymine linker for further improvement of affinity. The bivalent aptamer (3R02 Bivalent) bound to VEGF with a K(d) value of 30 pM. Finally, by constructing a VEGF-detection system using a VEGF antibody as the capture molecule and monovalent 3R02 as the detection molecule, a more sensitive assay was developed compared with the system using VEap121. These results indicate that in silico maturation could be an efficient method to improve aptamer affinity for construction of sensitive detection systems.
The crystal structure of a myristoyl acyl carrier protein specific thioesterase (C14ACP-TE) from a bioluminescent bacterium, Vibrio harveyi, was solved by multiple isomorphous replacement methods and refined to an R factor of 22% at 2.1-A resolution. This is the first elucidation of a three-dimensional structure of a thioesterase. The overall tertiary architecture of the enzyme resembles closely the consensus fold of the rapidly expanding superfamily of alpha/beta hydrolases, although there is no detectable homology with any of its members at the amino acid sequence level. Particularly striking similarity exists between the C14ACP-TE structure and that of haloalkane dehalogenase from Xanthobacter autotrophicus. Contrary to the conclusions of earlier studies [Ferri, S. R., & Meighen, E. A. (1991) J. Biol. Chem. 266, 12852-12857] which implicated Ser77 in catalysis, the crystal structure of C14ACP-TE reveals a lipase-like catalytic triad made up of Ser114, His241, and Asp211. Surprisingly, the gamma-turn with Ser114 in a strained secondary conformation (phi = 53 degrees, psi = -127 degrees), characteristic of the so-called nucleophilic elbow, does not conform to the frequently invoked lipase/esterase consensus sequence (Gly-X-Ser-X-Gly), as the positions of both glycines are occupied by larger amino acids. Site-directed mutagenesis and radioactive labeling support the catalytic function of Ser114. Crystallographic analysis of the Ser77-->Gly mutant at 2.5-A resolution revealed no structural changes; in both cases the loop containing the residue in position 77 is disordered.(ABSTRACT TRUNCATED AT 250 WORDS)
BackgroundCyanobacteria are an attractive candidate for the production of biofuel because of their ability to capture carbon dioxide by photosynthesis and grow on non-arable land. However, because huge quantities of water are required for cultivation, strict water management is one of the greatest issues in algae- and cyanobacteria-based biofuel production. In this study, we aim to construct a lytic cyanobacterium that can be regulated by a physical signal (green-light illumination) for future use in the recovery of biofuel related compounds.ResultsWe introduced T4 bacteriophage-derived lysis genes encoding holin and endolysin under the control of the green-light regulated cpcG2 promoter in Synechocystis sp. PCC 6803. When cells harboring the lysis genes were illuminated with both red and green light, we observed a considerable decrease in growth rate, a significant increase in cellular phycocyanin released in the medium, and a considerable fraction of dead cells. These effects were not observed when these cells were illuminated with only red light, or when cells not containing the lysis genes were grown under either red light or red and green light.These results indicate that our constructed green-light inducible lytic system was clearly induced by green-light illumination, resulting in lytic cells that released intracellular phycocyanin into the culture supernatant. This property suggests a future possibility to construct photosynthetic genetically modified organisms that are unable to survive under sunlight exposure. Expression of the self-lysis system with green-light illumination was also found to greatly increase the fragility of the cell membrane, as determined by subjecting the induced cells to detergent, osmotic-shock, and freeze-thaw treatments.ConclusionsA green-light inducible lytic system was constructed in Synechocystis sp. PCC 6803. The engineered lytic cyanobacterial cells should be beneficial for the recovery of biofuels and related compounds from cells with minimal effort and energy, due to the fragile nature of the induced cells. Furthermore, the use of light-sensing two-component systems to regulate the expression of exogenous genes in cyanobacteria promises to replace conventional chemical inducers in many bioprocess applications, impacting the limiting water management issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.