Allopurinol (ALP) hypersensitivity is a major cause of severe cutaneous adverse reactions and is strongly associated with the HLA-B*58:01 allele. However, it can occur in the absence of this allele with identical clinical manifestations. The immune mechanism of ALP-induced severe cutaneous adverse reactions is poorly understood, and the T cell–reactivity pattern in patients with or without the HLA-B*58:01 allele is not known. To understand the interactions among the drug, HLA, and TCR, we generated T cell lines that react to ALP or its metabolite oxypurinol (OXP) from HLA-B*58:01+ and HLA-B*58:01− donors and assessed their reactivity. ALP/OXP-specific T cells reacted immediately to the addition of the drugs and bypassed intracellular Ag processing, which is consistent with the “pharmacological interaction with immune receptors” (p-i) concept. This direct activation occurred regardless of HLA-B*58:01 status. Although most OXP-specific T cells from HLA-B*58:01+ donors were restricted by the HLA-B*58:01 molecule for drug recognition, ALP-specific T cells also were restricted to other MHC class I molecules. This can be explained by in silico docking data that suggest that OXP binds to the peptide-binding groove of HLA-B*58:01 with higher affinity. The ensuing T cell responses elicited by ALP or OXP were not limited to particular TCR Vβ repertoires. We conclude that the drug-specific T cells are activated by OXP bound to HLA-B*58:01 through the p-i mechanism.
The antiretroviral drug abacavir (abc) elicits severe drug hypersensitivity reactions in HLA-B*5701 + individuals. To understand the abc-specific activation of CD8 + T cells, we generated abc-specific T-cell clones (abc-TCCs). Abc reactivity could not be linked to the metabolism and/or processing of the drug, since abc metabolizing enzymes were not expressed in immune cells and inhibition of the proteasome in APCs did not affect TCC reactivity. Ca 2+ influx assays revealed different reactivity patterns of abc-TCCs. While all TCCs reacted to abc presented on HLA-B*5701 molecules, a minority also reacted immediately to abc in solution. Titration experiments showed that the ability to react immediately to abc correlated significantly with the TCR avidity of the T cells. Modifications of soluble abc concentrations revealed that the reactivity patterns of abc-TCCs were not fixed but dynamic. When TCCs with an intermediate TCR avidity were stimulated with increasing abc concentrations, they showed an accelerated activation kinetic. Thus, they reacted immediately to the drug, similar to the reaction of TCCs of high avidity. The observed immediate activation and the noninvolvement of the proteasome suggest that, in contrast to haptens, abc-specific T-cell stimulation does not require the formation of covalent bonds to produce a neo-antigenic determinant.Keywords: Abacavir hypersensitivity r HLA-B*5701 r TCR avidity Supporting Information available online IntroductionHypersensitivity reactions to drugs can lead to a variety of clinical symptoms and these involve different immune mechanisms [1]. Some of these reactions depend on genetic factors, among which HLA molecules play a particularly important role [2][3][4]. A striking example of such a genetic association is found in hypersensitivity reactions to the antiretroviral drug abacavir (abc), whereby it is strongly associated with the HLA-B*5701 allele [5]. Similar to other severe drug reactions [1], abc hypersensitivity Correspondence: Prof. Werner J. Pichler e-mail: wernerjoseph.pichler@insel.ch reactions involve drug-reacting T cells. This was illustrated by the presence of CD8 + T cells in skin biopsies of hypersensitive patients [6]. Moreover, a population of CD8 + T cells from HLA-B*5701 + individuals secrets IFN-γ in response to abc in vitro, irrespective of previous exposure to abc [7]. However, how abc is presented and subsequently stimulates T cells is still unclear.Currently, two models account for the stimulation of T cells by drugs. According to the hapten model, compounds bind to certain amino acids via covalent bonds, with or without previous metabolism of the drug. These hapten-modified proteins are then processed into antigenic peptides and are loaded onto MHC molecules of APCs. In this instance, the haptenization of molecules is important for the activation of the innate immune system [8]. If this was the case in abc hypersensitivity, these hapten complexes C
This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.
Abacavir hypersensitivity is a severe hypersensitivity reaction which occurs exclusively in carriers of the HLA-B*57∶01 allele. In vitro culture of PBMC with abacavir results in the outgrowth of abacavir-reacting CD8+ T cells, which release IFNγ and are cytotoxic. How this immune response is induced and what is recognized by these T cells is still a matter of debate. We analyzed the conditions required to develop an abacavir-dependent T cell response in vitro. The abacavir reactivity was independent of co-stimulatory signals, as neither DC maturation nor release of inflammatory cytokines were observed upon abacavir exposure. Abacavir induced T cells arose in the absence of professional APC and stemmed from naïve and memory compartments. These features are reminiscent of allo-reactivity. Screening for allo-reactivity revealed that about 5% of generated T cell clones (n = 136) from three donors were allo-reactive exclusively to the related HLA-B*58∶01. The addition of peptides which can bind to the HLA-B*57∶01-abacavir complex and to HLA-B*58∶01 during the induction phase increased the proportion of HLA-B*58∶01 allo-reactive T cell clones from 5% to 42%. In conclusion, abacavir can alter the HLA-B*57∶01-peptide complex in a way that mimics an allo-allele (‘altered self-allele’) and create the potential for robust T cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.