Increasing awareness of balanced diet benefits is boosting the demand for high-protein food and beverages. Sports supplements are often preferred over traditional protein sources to meet the appropriate dietary intake since they are widely available on the market as stable ready-to-eat products. However, the protein components may vary depending on both sources and processing conditions. The protein fraction of five commercial sports supplements was characterized and compared with that of typical industrial ingredients, i.e., whey protein concentrates and isolates and whey powder. The capillary electrophoresis profiles and the amino acid patterns indicated that, in some cases, the protein was extensively glycosylated and the supplemented amino acids did not correspond to those declared on the label by manufacturers. The evaluation by confocal laser scanning microscopy evidenced the presence of large aggregates mainly enforced by covalent crosslinks. The obtained findings suggest that, beside composition figures, provisions regarding sports supplements should also consider quality aspects, and mandatory batch testing of these products would provide more reliable information to sport dieticians.
Biopolymers of different natures (carbohydrates, proteins, etc.) recovered from by-products of industrial processes are increasingly being studied to obtain biomaterials as alternatives to conventional plastics, thus contributing to the implementation of a circular economy. The food industry generates huge amounts of by-products and waste, including unsold food products that reach the end of their shelf life and are no longer usable in the food chain. Milk proteins can be easily separated from dairy waste and adapted into effective bio-based polymeric materials. Firstly, this review describes the relevant properties of milk proteins and the approaches to modifying them for subsequent use. Then, we provide an overview of recent studies on the development of films and coatings based on milk proteins and, where available, their applications in food packaging. Comparisons among published studies were made based on the formulation as well as production conditions and technologies. The role of different additives and modifiers tested for the performances of films and coatings, such as water vapor permeability, tensile strength, and elongation at break, were reviewed. This review also outlines the limitations of milk-protein-based materials, such as moisture sensitivity and brittleness. Overall, milk proteins hold great potential as a sustainable alternative to petroleum-based polymers. However, their use in food packaging materials at an industrial level remains problematic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.