Abstract. Cosmic-ray neutron sensing (CRNS) has emerged as a reliable method for soil moisture and snow estimation. However, the applicability of this method beyond research has been limited due to, among others, the use of relatively large and expensive sensors. This paper presents the tests conducted to a new scintillator-based sensor especially designed to jointly measure neutron counts, total gamma-rays, and muons. The neutron signal is firstly compared against two conventional gas-tube-based CRNS sensors at two locations (Austria and Germany). The estimated soil moisture is further assessed at four agricultural sites in Italy based on gravimetric soil moisture collected within the sensor footprint. The results show that the signal detected by the new scintillator-based CRNS sensor is well in agreement with the conventional CRNS sensors and with the gravimetric soil moisture measurements. In addition, the muons and the total gamma-rays simultaneously detected by the sensor show promising features for a better correction of the incoming variability and for discriminating irrigation and precipitation events, respectively. Further experiments and analyses should be conducted, however, to better understand the added value of these additional data for soil moisture estimation. Overall, the new scintillator design shows to be a valid and compact alternative to conventional CRNS sensors for non-invasive soil moisture monitoring that can open the path to a wide range of applications.
<p>Over the last decades, several new observation systems have been developed, tested, and implemented in dedicated experimental sites by research groups in many countries all around the World. The data collected at these high-level test sites have boosted research and collaborations providing the basis for new hypothesis testing, better process understanding and model improvements. In contrast, national and more operational ground monitoring networks are still largely based on traditional instruments. Moreover, the different networks and the data are not always well integrated, even at the regional level. For these reasons, the capability to monitor the main components of the hydrological cycle over large areas is still limited and the observation systems to support the management of the water resources and for environmental protections can be improved. By using soil moisture and snow water equivalent monitoring as examples, in this contribution we present and discuss challenges, results and opportunities in upgrading national weather stations and improving the service provided by the public environmental agencies. Specifically, the difficulties of implementing ground monitoring networks are first discussed. The opportunities provided by the development of new non invasive sensors based on cosmic-ray neutrons detection are then presented. The activities and the results conducted during the last years to move this technology further from research to operation are shown. The current uptake from a number of Italian environmental agencies is reported. The key components and current challenges for a successful implementation are finally discussed.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.