In this paper, we present: (i) a novel analog silicon retina featuring auto-adaptive pixels that obey the Michaelis-Menten law, i.e. V=V(m) I(n)/I(n)+σ(n); (ii) a method of characterizing silicon retinas, which makes it possible to accurately assess the pixels' response to transient luminous changes in a ±3-decade range, as well as changes in the initial steady-state intensity in a 7-decade range. The novel pixel, called M(2)APix, which stands for Michaelis-Menten Auto-Adaptive Pixel, can auto-adapt in a 7-decade range and responds appropriately to step changes up to ±3 decades in size without causing any saturation of the Very Large Scale Integration (VLSI) transistors. Thanks to the intrinsic properties of the Michaelis-Menten equation, the pixel output always remains within a constant limited voltage range. The range of the Analog to Digital Converter (ADC) was therefore adjusted so as to obtain a Least Significant Bit (LSB) voltage of 2.35mV and an effective resolution of about 9 bits. The results presented here show that the M(2)APix produced a quasi-linear contrast response once it had adapted to the average luminosity. Differently to what occurs in its biological counterparts, neither the sensitivity to changes in light nor the contrast response of the M(2)APix depend on the mean luminosity (i.e. the ambient lighting conditions). Lastly, a full comparison between the M(2)APix and the Delbrück auto-adaptive pixel is provided.
For use in autonomous micro air vehicles, visual sensors must not only be small, lightweight and insensitive to light variations; on-board autopilots also require fast and accurate optical flow measurements over a wide range of speeds. Using an auto-adaptive bio-inspired Michaelis–Menten Auto-adaptive Pixel (M2APix) analog silicon retina, in this article, we present comparative tests of two optical flow calculation algorithms operating under lighting conditions from 6×10−7 to 1.6×10−2 W·cm−2 (i.e., from 0.2 to 12,000 lux for human vision). Contrast “time of travel” between two adjacent light-sensitive pixels was determined by thresholding and by cross-correlating the two pixels’ signals, with measurement frequency up to 5 kHz for the 10 local motion sensors of the M2APix sensor. While both algorithms adequately measured optical flow between 25 ∘/s and 1000 ∘/s, thresholding gave rise to a lower precision, especially due to a larger number of outliers at higher speeds. Compared to thresholding, cross-correlation also allowed for a higher rate of optical flow output (99 Hz and 1195 Hz, respectively) but required substantially more computational resources.
Here we present a novel bio-inspired optic flow (OF) sensor and its application to visual guidance and odometry on a low-cost car-like robot called BioCarBot. The minimalistic OF sensor was robust to high-dynamic-range lighting conditions and to various visual patterns encountered thanks to its MAPIX auto-adaptive pixels and the new cross-correlation OF algorithm implemented. The low-cost car-like robot estimated its velocity and steering angle, and therefore its position and orientation, via an extended Kalman filter (EKF) using only two downward-facing OF sensors and the Ackerman steering model. Indoor and outdoor experiments were carried out in which the robot was driven in the closed-loop mode based on the velocity and steering angle estimates. The experimental results obtained show that our novel OF sensor can deliver high-frequency measurements ([Formula: see text]) in a wide OF range (1.5-[Formula: see text]) and in a 7-decade high-dynamic light level range. The OF resolution was constant and could be adjusted as required (up to [Formula: see text]), and the OF precision obtained was relatively high (standard deviation of [Formula: see text] with an average OF of [Formula: see text], under the most demanding lighting conditions). An EKF-based algorithm gave the robot's position and orientation with a relatively high accuracy (maximum errors outdoors at a very low light level: [Formula: see text] and [Formula: see text] over about [Formula: see text] and [Formula: see text]) despite the low-resolution control systems of the steering servo and the DC motor, as well as a simplified model identification and calibration. Finally, the minimalistic OF-based odometry results were compared to those obtained using measurements based on an inertial measurement unit (IMU) and a motor's speed sensor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.