a b s t r a c tHuman matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn 2+ atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes.
In order to clarify the basis of neuronal toxicity exerted by the shortest active peptides of amyloid beta-protein (Ab), the toxic effects of Ab(31-35) and Ab(25-35) peptides on isolated rat brain mitochondria were investigated. The results show that exposure of isolated rat brain mitochondria to and Ab(25-35) peptides determines: (i) release of cytochrome c; (ii) mitochondrial swelling and (iii) a significant reduction in mitochondrial oxygen consumption. In contrast, the amplitude of these events resulted attenuated in isolated brain mitochondria exposed to the Ab(31-35)Met35 OX in which methionine-35 was oxidized to methionine sulfoxide. The Ab peptide derivative with norleucine substituting Met-35, i.e., Ab(31-35)Nle-35, had not effect on any of the biochemical parameters tested. We have further characterized the action of Ab(31-35) and Ab(25-35) peptides on neuronal cells.Taken together our result indicate that Ab(31-35) and Ab(25-35) peptides in non-aggregated form, i.e., predominantly monomeric, are strongly neurotoxic, having the ability to enter within the cells, determining mitochondrial damage with an evident trigger of apoptotic signals. Such a mechanism of toxicity seems to be dependent by the redox state of methionine-35.
The toxic behaviour of the two shorter sequences of the native Abeta amyloid peptide required for cytotoxicity i.e., Abeta(31-35) and Abeta(25-35) peptides, was studied. We have shown that Abeta(31-35) peptide induces neurotoxicity in undifferentiated PC 12 cell via an apoptotic cell death pathway, including caspase activation and DNA fragmentation. Abeta(25-35) peptide, like the shorter amyloid peptide has the ability to induce neurotoxicity, as evaluated by the MTS reduction assay and by adherent cell count, but the Abeta(25-35) peptide-induced neurotoxicity is not associated with any biochemical features of apoptosis. The differences observed between the neurotoxic properties of Abeta(31-35) and Abeta(25-35) peptides might result on their different ability to be internalised within the neuronal cells. Furthermore, this study reveals that the redox state of methionine residue, C-terminal in Abeta(31-35) and Abeta(25-35) peptides affect in a different way the toxic behaviour of these two short amyloid fragments. Taken together our results suggest that Abeta(31-35) peptide induces cell death by apoptosis, unlike the Abeta(25-35) peptide and that role played by methionine-35 in Abeta induced neurotoxicity might be related to the Abeta aggregation state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.