Radiomics leverages existing image datasets to provide non-visible data extraction via image post-processing, with the aim of identifying prognostic, and predictive imaging features at a sub-region of interest level. However, the application of radiomics is hampered by several challenges such as lack of image acquisition/analysis method standardization, impeding generalizability. As of yet, radiomics remains intriguing, but not clinically validated. We aimed to test the feasibility of a non-custom-constructed platform for disseminating existing large, standardized databases across institutions for promoting radiomics studies. Hence, University of Texas MD Anderson Cancer Center organized two public radiomics challenges in head and neck radiation oncology domain. This was done in conjunction with MICCAI 2016 satellite symposium using Kaggle-in-Class, a machine-learning and predictive analytics platform. We drew on clinical data matched to radiomics data derived from diagnostic contrast-enhanced computed tomography (CECT) images in a dataset of 315 patients with oropharyngeal cancer. Contestants were tasked to develop models for (i) classifying patients according to their human papillomavirus status, or (ii) predicting local tumor recurrence, following radiotherapy. Data were split into training, and test sets. Seventeen teams from various professional domains participated in one or both of the challenges. This review paper was based on the contestants' feedback; provided by 8 contestants only (47%). Six contestants (75%) incorporated extracted radiomics features into their predictive model building, either alone (n = 5; 62.5%), as was the case with the winner of the “HPV” challenge, or in conjunction with matched clinical attributes (n = 2; 25%). Only 23% of contestants, notably, including the winner of the “local recurrence” challenge, built their model relying solely on clinical data. In addition to the value of the integration of machine learning into clinical decision-making, our experience sheds light on challenges in sharing and directing existing datasets toward clinical applications of radiomics, including hyper-dimensionality of the clinical/imaging data attributes. Our experience may help guide researchers to create a framework for sharing and reuse of already published data that we believe will ultimately accelerate the pace of clinical applications of radiomics; both in challenge or clinical settings.
Abstract. Dynamic Contrast Enhanced-Magnetic Resonance Imaging (DCE-MRI) has demonstrated in recent years a great potential in screening of high-risk women for breast cancer, in staging newly diagnosed patients and in assessing therapy effects. The aim of this work is to propose an automated system for suspicious lesion detection in DCE-MRI to support radiologists during patient image analysis. The proposed method is based on a Support Vector Machine trained with dynamic features, extracted, after a suitable pre-processing of the image, from an area preselected by using a pixel-based approach. The performance were evaluated by using a leave-one-patient-out approach and compared to manual segmentation made up by an experienced radiologist. Our results were also compared to other automatic segmentation methodologies: the proposed method maximises the area of correctly detected lesions while minimizing the number of false alarms (with an accuracy of 98.70%).
Data collection and analysis are becoming more and more important in a variety of application domains as long as the novel technologies advance. At the same time, we are experiencing a growing need for human-machine interaction with expert systems pushing research through new knowledge representation models and interaction paradigms. In particular, in the last years eHealth - that indicates all the health-care practices supported by electronic elaboration and remote communications - calls for the availability of smart environment and big computational resources. The aim of this paper is to introduce the HOLMeS (Health On-Line Medical Suggestions) framework. The introduced system proposes to change the eHealth paradigm where a trained machine learning algorithm, deployed on a cluster-computing environment, provides medical suggestion via both chat-bot and web-app modules. The chat-bot, based on deep learning approaches, is able to overcome the limitation of biased interaction between users and software, exhibiting a human-like behavior. Results demonstrate the effectiveness of the machine learning algorithms showing 74.65% of Area Under ROC Curve (AUC) when first-level features are used to assess the occurrence of different prevention pathways. When disease-specific features are added, HOLMeS shows 86.78% of AUC achieving a more specific prevention pathway evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.