LoRaWAN (Long Range Wide Area Network) is a Low-Power Wide Area Networks (LPWAN) technology with very rapid uptake during the previous years, developed by the LoRa (Long Range) Alliance as an open standard operating over the unlicensed band. Current LoRaWAN architecture foresees specific techniques for bootstrapping end-to-end encryption during network initialization. In particular, this work focuses on the Over-The-Air Activation (OTAA) method, which uses two keys (Network key (NwkKey) and Application key (AppKey)) that are hard-coded into the device and do not change throughout the entire lifetime of the deployment. The inability to refresh these two keys is as a weak point in terms of the overall security of the network especially when considering deployments that are expected to operate for at least 10–15 years. In this paper, the security issues of OTAA are presented in detail highlighting the vulnerabilities against the specific type of attacks. A new scheme for network activation is proposed that builds upon the current LoRaWAN architecture in a way that maintains backwards compatibility while resolving certain vulnerabilities. Under the new mechanism, the devices periodically negotiate new keys securely based on elliptic-curve cryptography. The security properties of the proposed mechanism are analyzed against a specific type of attacks. The analysis indicates that the new secure rejoin mechanism guarantees (i) computational key secrecy, (ii) decisional key secrecy, and (iii) key independence, forward and backward, for both root keys thus properly addressing the considered security vulnerabilities of LoRaWAN. Moreover, the method is implemented in software using the RIOT-OS, a hardware-independent operating system that supports many different architectures for 8 bit, 16 bit, 32 bit and 64 bit processors. The resulting software is evaluated on the FIT IoT-Lab real-world experimentation facility under a diverse set of ARM Cortex-M* devices targeting a broad range of IoT applications, ranging from advanced wearable devices to interactive entertainment devices, home automation and industrial cyber-physical systems. The experiments indicate that the overall overhead incurred in terms of energy and time by the proposed rejoin mechanism is acceptable given the low frequency of execution and the improvements to the overall security of the LoRaWAN1.1 OTAA method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.